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Preface

Idea and concept
The MueLu tutorial is written as a hands-on tutorial for MueLu, the next generation multigrid
framework in Trilinos. It covers the whole spectrum from absolute beginners’ topics to expert
level. Since the focus of this tutorial is on practical and technical aspects of multigrid methods
in general and MueLu in particular, the reader is expected to have a basic understanding of
multigrid methods and its general underlying concepts. Please refer to multigrid textbooks (e.g.
[1]) for the theoretical background.

Content
The tutorial is split into three parts. The first part contains four tutorials for beginners who are
interested in using multigrid methods. No knowledge about C++ is required if the programs
are used that come with the tutorial (in the Trilinos repository). If one uses the virtual box
image one can even avoid the Trilinos compilation process. So, the tutorials in the first part
can also be used for teaching purposes. One can easily study the smoothing effect of multigrid
smoothers and perform some very basic experiments which helps to gain a better understanding
of multigrid methods. In the quick start tutorial all steps are documented step by step such that
it should be very easy to follow the tutorial. Different exercises may encourage the reader for
performing some more experiments and tests. The following tutorials give an overview of the
existing level smoothers and transfer operators that can easily be used with the simple XML
format MueLu uses for defining the multigrid hierarchies. In addition, it is explained how to
visualize the aggregates and export the multigrid levels for a more in-depth analysis.

The second part consists of five tutorials which are for users which are interested in some
more background on the underlying techniques that are used in MueLu. The user still does
not need explicit knowledge of C++ or any other programming language, but some interest in
object-oriented design concepts may be helpful to understand the factory concept. The focus of
the second part is on the introduction of the advanced XML interface for MueLu which describes
all internal building blocks of the multigrid setup procedures with its internal dependencies. In
context of transfer operator smoothing a brief introduction of the theory is given with some
in-depth details on the algorithmic design in MueLu. More advanced topics such as rebalancing
are handled as well as aggregation strategies. Additional exercises help the reader to perform
some experiments in practice.

The third part is meant for expert users who want to use MueLu within their own software.
Many detailed C++ examples show how to use MueLu from an user application as preconditioner
for a Krylov subspace method or as a standalone multigrid solver. We expect the reader to be
familiar with Trilinos, especially with the linear algebra packages Epetra and Tpetra as
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well as the linear solver packages AztecOO or Belos. For users who are already using ML,
the predecessor multigrid package of MueLu in Trilinos, we provide a chapter describing the
migration process from ML to MueLu.

References
For a complete overview of all features and available parameters in MueLu the reader may refer
to the MueLu user guide [2]. For the most current version of MueLu it is recommended to visit
the homepage

http://trilinos.org/packages/muelu/

If you find errors in this tutorial, please contact the MueLu user list

muelu-users@software.sandia.gov
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Beginners tutorial





1. Quick start

The first example is meant to quickly get into touch with MueLu.

1.1 Example problem
We generate a test matrix corresponding to the stencil of a 2D Laplacian operator on a structured
Cartesian grid. The matrix stencil is

1

h2

 −1
−1 4 −1

−1

 . (1.1)

The resulting matrix is symmetric positive definite. We choose the right hand side to be the
constant vector one and use a random initial guess for the iterative solution process. The problem
domain is the unit cube with a Cartesian (uniform) mesh.

1.2 User interface
For this tutorial there is an easy-to-use user interface to perform some experiments with multigrid
methods for the given problem as described in §1.1. To use the user-interface run

./hands-on.py

in a terminal in the doc/Tutorial/src folder.
First one has to choose a problem. For this tutorial the right choice is the option 0 for the

Laplace 2D problem on a 50× 50 mesh.
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Next one has to choose a xml file with the multigrid parameters. Choose option 2 and put in
xml/s1_easy.xml as filename for the xml file containing the xml parameters that are used for
the multigrid method.

* Please make sure that you enter a filename that actually exists on your hard disk!

The s1_easy.xml file has the following content

1 <ParameterList name="MueLu">
2

3 <Parameter name="verbosity" type="string" value="low"/>
4

5 <Parameter name="max levels" type="int" value="3"/>
6 <Parameter name="coarse: max size" type="int" value="10"/>
7

8 <Parameter name="multigrid algorithm" type="string" value="sa"/>
9

10 <!-- Smoothing -->
11 <!-- Comment/uncomment different sections to try different smoothers -->
12

13 <!-- Jacobi -->
14 <Parameter name="smoother: type" type="string" value="RELAXATION"/>
15 <ParameterList name="smoother: params">
16 <Parameter name="relaxation: type" type="string" value="Jacobi"/>
17 <Parameter name="relaxation: sweeps" type="int" value="1"/>
18 <Parameter name="relaxation: damping factor" type="double" value="0.9"/>
19 </ParameterList>
20

21 <!-- Aggregation -->
22 <Parameter name="aggregation: type" type="string" value="uncoupled"/>
23 <Parameter name="aggregation: min agg size" type="int" value="3"/>
24 <Parameter name="aggregation: max agg size" type="int" value="9"/>
25

26 </ParameterList>

As one can easily find from the xml parameters, a multigrid method with not more than 3 levels
and a damped Jacobi method for level smoothing shall be used.

Next, choose option 0 and run the example. That is, the linear system is created and
iteratively solved both by a preconditioned CG method (from the AztecOO package) with a
MueLu multigrid preconditioner and a standalone multigrid solver (again using MueLu) with
the given multigrid parameters.
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Note that the line mpirun -np 2 MueLu_tutorial_laplace2d.exe –nx ... is the command
that is executed in the background. Per default are 2 processors used.

After pressing a key we are ready for a first analysis as it is stated by the green letters Results
up to date!

* If the results are not up to date always choose option 0 first to recalculate the results.

To check the output select option 1 and you should find the following screen output This
should produce the following output on screen.

1 Clearing old data (if any)
2 Level 0
3 Setup Smoother (MueLu::IfpackSmoother{type = point relaxation stand-alone})
4 IFPACK (Local Jacobi, sweeps=1, damping=0.9)
5 Level 1
6 Prolongator smoothing (MueLu::SaPFactory)
7 Build (MueLu::TentativePFactory)
8 Build (MueLu::UncoupledAggregationFactory)
9 Build (MueLu::CoalesceDropFactory)

10 lightweight wrap = 1
11 algorithm = "classical": threshold = 0, blocksize = 1
12 Detected 0 Dirichlet nodes
13 Number of dropped entries in unamalgamated matrix graph: 0/49600 (0%)
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14 BuildAggregates (Phase - (Dirichlet))
15 BuildAggregates (Phase 1 (main))
16 BuildAggregates (Phase 2 (cleanup))
17 BuildAggregates (Phase 3 (emergency))
18 BuildAggregates (Phase - (isolated))
19 "UC": MueLu::Aggregates{nGlobalAggregates = 1700}
20 Build (MueLu::AmalgamationFactory)
21 Build (MueLu::CoarseMapFactory)
22 Prolongator damping factor = 0.704812 (1.33333 / 1.89176)
23 Transpose P (MueLu::TransPFactory)
24 Computing Ac (MueLu::RAPFactory)
25 Setup Smoother (MueLu::IfpackSmoother{type = point relaxation stand-alone})
26 IFPACK (Local Jacobi, sweeps=1, damping=0.9)
27 Level 2
28 Prolongator smoothing (MueLu::SaPFactory)
29 Build (MueLu::TentativePFactory)
30 Build (MueLu::UncoupledAggregationFactory)
31 Build (MueLu::CoalesceDropFactory)
32 PreDropFunctionConstVal: threshold = 0
33 lightweight wrap = 1
34 algorithm = "classical": threshold = 0, blocksize = 1
35 Detected 0 Dirichlet nodes
36 Number of dropped entries in unamalgamated matrix graph: 0/14928 (0%)
37 BuildAggregates (Phase - (Dirichlet))
38 BuildAggregates (Phase 1 (main))
39 BuildAggregates (Phase 2 (cleanup))
40 BuildAggregates (Phase 3 (emergency))
41 BuildAggregates (Phase - (isolated))
42 "UC": MueLu::Aggregates{nGlobalAggregates = 202}
43 Build (MueLu::AmalgamationFactory)
44 Nullspace factory (MueLu::NullspaceFactory)
45 Build (MueLu::CoarseMapFactory)
46 Prolongator damping factor = 0.985194 (1.33333 / 1.35337)
47 Transpose P (MueLu::TransPFactory)
48 Computing Ac (MueLu::RAPFactory)
49 Setup Smoother (MueLu::AmesosSmoother{type = Superlu})

created with MueLu version 4614738

* Depending on the number of lines in your terminal you may have to scroll up to the top of
the file.

These lines give you some information about the setup process with some details on the
aggregation process and the transfer operators. Note that for this example three levels are built
(Level 0 for the finest level, level 1 as inter-medium level and level 2 for the coarsest level). Then
an overview of the different multigrid levels is given by

1 Number of levels = 3
2 Operator complexity = 1.34
3

4 matrix rows nnz nnz/row procs
5 A 0 10000 49600 4.96 1
6 A 1 1700 14928 8.78 1
7 A 2 202 1826 9.04 1
8

9 Smoother (level 0) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
10

11 Smoother (level 1) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
12

13 Smoother (level 2) pre : MueLu::AmesosSmoother{type = Superlu}
14 Smoother (level 2) post : no smoother

created with MueLu version 4614738
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One can see that a three level multigrid method is used with a direct solver on the coarsest
level and Jacobi level smoothers on the fine and inter-medium level. Furthermore some basic
information is printed such as the operator complexity.

In the end the CG convergence is printed when applying the generated multigrid method as
preconditioner within a CG solver from the AztecOO package in Trilinos. The numbers give
the relative residual after the corresponding number of iterations as well as the solution time in
seconds.

1 Use multigrid hierarchy as preconditioner within CG.
2

3 *******************************************************
4 ***** Problem: Epetra::CrsMatrix
5 ***** Preconditioned CG solution
6 ***** MueLu::Hierarchy
7 ***** No scaling
8 *******************************************************
9

10 iter: 0 residual = 1.000000e+00
11 iter: 1 residual = 2.030523e-01
12 iter: 2 residual = 4.747069e-02
13 iter: 3 residual = 1.134510e-02
14 iter: 4 residual = 2.804370e-03
15 iter: 5 residual = 6.781945e-04
16 iter: 6 residual = 1.634546e-04
17 iter: 7 residual = 4.023337e-05
18 iter: 8 residual = 9.584034e-06
19 iter: 9 residual = 2.310893e-06
20 iter: 10 residual = 5.846153e-07
21 iter: 11 residual = 1.376473e-07
22 iter: 12 residual = 3.306440e-08
23 iter: 13 residual = 7.996668e-09
24 iter: 14 residual = 1.894303e-09
25 iter: 15 residual = 4.581502e-10
26 iter: 16 residual = 1.126788e-10
27 iter: 17 residual = 2.758249e-11
28 iter: 18 residual = 6.866509e-12
29 iter: 19 residual = 1.611086e-12
30 iter: 20 residual = 3.857267e-13
31

32

33 Solution time: 0.178861 (sec.)
34 total iterations: 20

created with MueLu version 4614738

Selecting option 6 gives you four plots.
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The lower left plot shows the exact solution of the linear system (using a direct solver from
the Amesos package). The lower right plot shows the multigrid solution when 1 sweep with
a V-cycle of the multigrid method as defined in the xml parameter file is applied to the linear
system as a standalone multigrid solver. As one can see, the multigrid solution with a random
initial guess is far away from the exact solution. The upper left plot shows the difference between
the multigrid solution and the exact solution. Finally, the upper right plot shows the distribution
of the fine level mesh nodes over the processors (in our example we use 2 processors).

* Note, that the plots do not show the solution of the preconditioned CG method! The solution
of the CG method is always exact up to a given tolerance as long as the multigrid preconditioner
is sufficient. This can be checked by the screen output under option 1.

As a first experiment we change the number of multigrid sweeps for the stand alone multigrid
smoother. Let’s choose option 5 and use 10 multigrid sweeps.

Then, do not forget to rerun the examples to update the results. That is, choose option 0 and
wait for the simulation to finish. Then plot again the results using menu option 6 and you should
obtain
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As one can see is the multigrid solution rather close to the exact solution. In the error plot one
finds some low and high frequency error components.

Exercise 1.1 Change the number of processors. Use option 4 and select for example 4
processors (instead of 2). Rerun the example and plot the results.

�

Exercise 1.2 Compare the output when using 4 processors with the output for only 2 processors.
Is the number of aggregates changing? Is there some effect on the quality of the multigrid
solution. How does the number and convergence history change for the preconditioned CG
method? �
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Exercise 1.3 Choose option 8 to close the program. �

1.3 The XML input deck – multigrid parameters
After we have learned the basics of the driver program for our experiments we now perform some
experiments with our multigrid methods. We again use the simple 2D Laplace problem. First,
we create a copy of the solver parameters using

cp xml/s1_easy.xml mysolver.xml

Then, we run the driver program again using

./hands-on.sh

and choose option 0 for the 2D Laplace example on the 50× 50 mesh. Use the xml parameters
from the mysolver.xml file, that is, choose option 2 and put in mysolver.xml. Make sure that
the problem can be solved with the parameters (option 0) and verify the solver output.

Once that is done it is time for some first experiments. Open you mysolver.xml file in a
text editor. You can try option 3 for doing that, but alternatively you can also do it by hand
choosing your favorite text editor.

Now, let’s change the maximum number of multigrid levels from 3 to 10 in the xml file, that
is, change the value of the parameter max levels from 3 to 10. Do not forget to save the file and
rerun the example by choosing option 0 in the driver program. The screen output should be the
following

1 Number of levels = 5
2 Operator complexity = 1.35
3

4 matrix rows nnz nnz/row procs
5 A 0 10000 49600 4.96 2
6 A 1 1700 15148 8.91 2
7 A 2 208 2050 9.86 2
8 A 3 25 275 11.00 2
9 A 4 4 16 4.00 2
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10

11 Smoother (level 0) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
12

13 Smoother (level 1) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
14

15 Smoother (level 2) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
16

17 Smoother (level 3) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
18

19 Smoother (level 4) pre : MueLu::AmesosSmoother{type = Superlu}
20 Smoother (level 4) post : no smoother

created with MueLu version 4614738

Note that even though we allow for at maximum 10 multigrid levels the coarsening process
stops after level 4. The reason is that the linear operator on multigrid level 4 has only 4 lines
and therefore is smaller than the coarse: max size parameter in the xml parameter list which
defines the maximum size of the linear operator on the coarsest level.

Exercise 1.4 How do you have to choose the coarse: max size parameter to obtain a 3
level multigrid method again? Increase the parameter accordingly, rerun the simulation and
check your results. �

Exercise 1.5 What happens if you allow only for a 1 level method (i.e., no multigrid)? How
does this affect the preconditioned CG method? �

The option sa for smoothed aggregation in the multigrid algorithm parameter can be
considered to be optimal for symmetric positive definite problems. We can compare it with
the option unsmoothed as a robust but slower alternative. Let’s choose a 3 level multigrid
method with unsmoothed transfer operators (i.e., max levels = 3, multigrid algorithm =
unsmoothed), then we obtain

1 Use multigrid hierarchy as preconditioner within CG.
2

3 *******************************************************
4 ***** Problem: Epetra::CrsMatrix
5 ***** Preconditioned CG solution
6 ***** MueLu::Hierarchy
7 ***** No scaling
8 *******************************************************
9

10 iter: 0 residual = 1.000000e+00
11 iter: 1 residual = 1.726353e-01
12 iter: 2 residual = 3.571945e-02
13 iter: 3 residual = 1.101478e-02
14 iter: 4 residual = 4.190157e-03
15 iter: 5 residual = 2.378439e-03
16 iter: 6 residual = 1.313185e-03
17 iter: 7 residual = 6.982733e-04
18 iter: 8 residual = 3.655210e-04
19 iter: 9 residual = 2.069851e-04
20 iter: 10 residual = 1.169833e-04
21 iter: 11 residual = 7.085908e-05
22 iter: 12 residual = 4.030429e-05
23 iter: 13 residual = 2.453853e-05
24 iter: 14 residual = 1.375104e-05
25 iter: 15 residual = 7.741195e-06
26 iter: 16 residual = 4.689433e-06
27 iter: 17 residual = 2.600967e-06
28 iter: 18 residual = 1.451541e-06
29 iter: 19 residual = 8.757440e-07
30 iter: 20 residual = 4.975362e-07
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31 iter: 21 residual = 2.641755e-07
32 iter: 22 residual = 1.412237e-07
33 iter: 23 residual = 8.373356e-08
34 iter: 24 residual = 4.714368e-08
35 iter: 25 residual = 2.465322e-08
36 iter: 26 residual = 1.339658e-08
37 iter: 27 residual = 7.170277e-09
38 iter: 28 residual = 4.338305e-09
39 iter: 29 residual = 2.438524e-09
40 iter: 30 residual = 1.458018e-09
41 iter: 31 residual = 7.910160e-10
42 iter: 32 residual = 4.096269e-10
43 iter: 33 residual = 2.343424e-10
44 iter: 34 residual = 1.263163e-10
45 iter: 35 residual = 6.958107e-11
46 iter: 36 residual = 3.744427e-11
47 iter: 37 residual = 2.094458e-11
48 iter: 38 residual = 1.107644e-11
49 iter: 39 residual = 6.050847e-12
50 iter: 40 residual = 3.482129e-12
51 iter: 41 residual = 1.943140e-12
52 iter: 42 residual = 1.111635e-12
53 iter: 43 residual = 6.438972e-13
54

55

56 Solution time: 0.278655 (sec.)
57 total iterations: 43

created with MueLu version 4614738

Compared with the smoothed aggregation method (multigrid algorithm = sa) which uses
some smoothed transfer operator basis functions within the multigrid method, the unsmoothed
multigrid algorithm needs a significantly higher number of iterations. The same method with
smoothed transfer operator basis functions gives

1 Use multigrid hierarchy as preconditioner within CG.
2

3 *******************************************************
4 ***** Problem: Epetra::CrsMatrix
5 ***** Preconditioned CG solution
6 ***** MueLu::Hierarchy
7 ***** No scaling
8 *******************************************************
9

10 iter: 0 residual = 1.000000e+00
11 iter: 1 residual = 2.057416e-01
12 iter: 2 residual = 4.853343e-02
13 iter: 3 residual = 1.170574e-02
14 iter: 4 residual = 2.929820e-03
15 iter: 5 residual = 7.016305e-04
16 iter: 6 residual = 1.688372e-04
17 iter: 7 residual = 4.174585e-05
18 iter: 8 residual = 9.905758e-06
19 iter: 9 residual = 2.427674e-06
20 iter: 10 residual = 6.145845e-07
21 iter: 11 residual = 1.433050e-07
22 iter: 12 residual = 3.413459e-08
23 iter: 13 residual = 8.477762e-09
24 iter: 14 residual = 2.045495e-09
25 iter: 15 residual = 4.970906e-10
26 iter: 16 residual = 1.242104e-10
27 iter: 17 residual = 3.038890e-11
28 iter: 18 residual = 7.508848e-12
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29 iter: 19 residual = 1.717328e-12
30 iter: 20 residual = 4.161027e-13
31

32

33 Solution time: 0.143206 (sec.)
34 total iterations: 20

created with MueLu version 4614738

* You can find the corresponding xml files also in xml/s1_easy_3levels_unsmoothed.xml
and xml/s1_easy_3levels_smoothed.xml.

Exercise 1.6 Compare the screen output of the unsmoothed multigrid method and the
smoothed aggregation multigrid method. Which parts are missing in the multigrid setup for
the unsmoothed multigrid method? How does the multigrid method affect the aggregates? �

Exercise 1.7 Performing 10 multigrid sweeps both with the unsmoothed and the smoothed
aggregation multigrid method gives the following error plots

Which one belongs to the unsmoothed multigrid method? �





2. Level smoothers

From the last tutorial we have learned that the used multigrid algorithm may have a significant
influence in the convergence speed. When comparing the error plots for the standalone multigrid
smoothers with unsmoothed and smoothed aggregation multigrid one finds also a notable
difference in the “smoothness” of the error.

2.1 Background on multigrid methods
Obviously there are cases where some highly oscillatory error modes are left and overlaying some
low frequency modes. In other cases there are only low frequency error modes left. Theses are
basically the two typical cases one might find in practice.

Multigrid methods are based on the fact, that (cheap) level smoothing method often are able
to smooth out high oscillatory error components whereas they cannot reduce low frequency error
components very well. These low frequency error components then are transferred to a coarse
level where they can be seen as high frequency error component for a level smoother on the
coarse level.

One should not forget that for an efficient multigrid method both the so-called coarse level
correction method and the level smoothers have to work together. That is, one has to choose
the right multigrid method (e.g., unsmoothed or sa) in combination with an appropriate level
smoothing strategy.

2.2 Example
In context of multigrid level smoothers we have to define both the level smoothers and the coarse
solver. Usually, a direct solver is used as coarse solver that is applied to the coarsest multigrid
levels. However, it is also possible to apply any other kind of iterative smoothing method or even
no solver at all (even though this would be non-standard). The following XML file shows how to
use a Jacobi smoother both for level smoothing and as coarse solver.

1 <ParameterList name="MueLu">
2

3 <Parameter name="verbosity" type="string" value="low"/>
4

5 <Parameter name="max levels" type="int" value="10"/>
6 <Parameter name="coarse: max size" type="int" value="10"/>
7

8 <Parameter name="multigrid algorithm" type="string" value="unsmoothed"/>
9
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10 <!-- Jacobi -->
11 <Parameter name="smoother: type" type="string" value="RELAXATION"/>
12 <ParameterList name="smoother: params">
13 <Parameter name="relaxation: type" type="string" value="Jacobi"/>
14 <Parameter name="relaxation: sweeps" type="int" value="1"/>
15 <Parameter name="relaxation: damping factor" type="double" value="0.9"/>
16 </ParameterList>
17

18 <!-- Jacobi -->
19 <Parameter name="coarse: type" type="string" value="RELAXATION"/>
20 <ParameterList name="coarse: params">
21 <Parameter name="relaxation: type" type="string" value="Jacobi"/>
22 <Parameter name="relaxation: sweeps" type="int" value="1"/>
23 <Parameter name="relaxation: damping factor" type="double" value="0.9"/>
24 </ParameterList>
25

26 </ParameterList>

The corresponding multigrid hierarchy is

1 Number of levels = 5
2 Operator complexity = 1.26
3

4 matrix rows nnz nnz/row procs
5 A 0 10000 49600 4.96 2
6 A 1 1700 11476 6.75 2
7 A 2 216 1380 6.39 2
8 A 3 30 168 5.60 2
9 A 4 6 24 4.00 2

10

11 Smoother (level 0) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
12

13 Smoother (level 1) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
14

15 Smoother (level 2) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
16

17 Smoother (level 3) both : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
18

19 Smoother (level 4) pre : IFPACK (Local Jacobi, sweeps=1, damping=0.9)
20 Smoother (level 4) post : no smoother

created with MueLu version 4614738

Figures 2.1 and 2.2 show the multigrid effect of different number of Jacobi smoothers on all
multigrid levels.

One has even more fine-grained control over pre- and post-smoothing.

1 <ParameterList name="MueLu">
2

3 <Parameter name="verbosity" type="string" value="low"/>
4

5 <Parameter name="max levels" type="int" value="10"/>
6 <Parameter name="coarse: max size" type="int" value="10"/>
7

8 <Parameter name="multigrid algorithm" type="string" value="unsmoothed"/>
9

10 <!-- Jacobi -->
11 <Parameter name="smoother: pre type" type="string" value="RELAXATION"/>
12 <ParameterList name="smoother: pre params">
13 <Parameter name="relaxation: type" type="string" value="Symmetric Gauss-Seidel"/>
14 <Parameter name="relaxation: sweeps" type="int" value="3"/>
15 <Parameter name="relaxation: damping factor" type="double" value="0.6"/>
16 </ParameterList>
17
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18 <Parameter name="smoother: post type" type="string" value="RELAXATION"/>
19 <ParameterList name="smoother: post params">
20 <Parameter name="relaxation: type" type="string" value="Gauss-Seidel"/>
21 <Parameter name="relaxation: sweeps" type="int" value="1"/>
22 <Parameter name="relaxation: damping factor" type="double" value="0.9"/>
23 </ParameterList>
24

25

26 <!-- Direct solver -->
27 <Parameter name="coarse: type" type="string" value="DIRECT"/>
28

29 </ParameterList>

This produces the following multigrid hierarchy

1 Number of levels = 5
2 Operator complexity = 1.26
3

4 matrix rows nnz nnz/row procs
5 A 0 10000 49600 4.96 2
6 A 1 1700 11476 6.75 2
7 A 2 216 1380 6.39 2
8 A 3 30 168 5.60 2
9 A 4 6 24 4.00 2

10

11 Smoother (level 0) pre : IFPACK (Local SGS, sweeps=3, damping=0.6)
12 Smoother (level 0) post : IFPACK (Local GS, sweeps=1, damping=0.9)
13

14 Smoother (level 1) pre : IFPACK (Local SGS, sweeps=3, damping=0.6)
15 Smoother (level 1) post : IFPACK (Local GS, sweeps=1, damping=0.9)
16

17 Smoother (level 2) pre : IFPACK (Local SGS, sweeps=3, damping=0.6)
18 Smoother (level 2) post : IFPACK (Local GS, sweeps=1, damping=0.9)
19

20 Smoother (level 3) pre : IFPACK (Local SGS, sweeps=3, damping=0.6)
21 Smoother (level 3) post : IFPACK (Local GS, sweeps=1, damping=0.9)
22

23 Smoother (level 4) pre : MueLu::AmesosSmoother{type = Superlu}
24 Smoother (level 4) post : no smoother

created with MueLu version 4614738

* Note that the relaxation based methods provided by the Ifpack package are embedded in an
outer additive Schwarz method.

Of course, there exist other smoother methods such as polynomial smoothers (Chebyshev)
and ILU based methods. A detailed overview of the different available smoothers can be found
in the MueLu users guide.

Exercise 2.1 Play around with the smoother parameters and study their effect on the error
plot and the convergence of the preconditioned cg method. For all available smoothing options
and parameters refer to the MueLu user guide ([2]). Hint: use unsmoothed transfer operator
basis functions (i.e., multigrid algorithm = unsmoothed) to highlight the effect of the level
smoothers. �

Exercise 2.2 Use the following parameters to solve the 50 × 50 Laplace 2D problem on 2
processors

1 <ParameterList name="MueLu">
2

3 <Parameter name="verbosity" type="string" value="low"/>
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(a) 1 level with 1 Jacobi sweep
(ω = 0.9)

(b) 1 level with 10 Jacobi sweeps
(ω = 0.9)

(c) 1 level with 100 Jacobi sweeps
(ω = 0.9)

(d) 2 level with 1 Jacobi sweep
(ω = 0.9)

(e) 2 level with 10 Jacobi sweeps
(ω = 0.9)

(f) 2 level with 100 Jacobi sweeps
(ω = 0.9)

(g) 3 level with 1 Jacobi sweep
(ω = 0.9)

(h) 3 level with 10 Jacobi sweeps
(ω = 0.9)

(i) 3 level with 100 Jacobi sweeps
(ω = 0.9)

Figure 2.1: 2D Laplace equation on 50× 50 mesh after 1 V-cycle with an AMG multigrid solver
and Jacobi smoothers on all multigrid levels. (2 processors)
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(a) 1 level with 1 Jacobi sweep
(ω = 0.9)

(b) 1 level with 10 Jacobi sweeps
(ω = 0.9)

(c) 1 level with 100 Jacobi sweeps
(ω = 0.9)

(d) 2 level with 1 Jacobi sweep
(ω = 0.9)

(e) 2 level with 10 Jacobi sweeps
(ω = 0.9)

(f) 2 level with 100 Jacobi sweeps
(ω = 0.9)

(g) 3 level with 1 Jacobi sweep
(ω = 0.9)

(h) 3 level with 10 Jacobi sweeps
(ω = 0.9)

(i) 3 level with 100 Jacobi sweeps
(ω = 0.9)

Figure 2.2: 2D Laplace equation on 50× 50 mesh after 5 V-cycle with an AMG multigrid solver
and Jacobi smoothers on all multigrid levels. (2 processors)
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4

5 <Parameter name="max levels" type="int" value="3"/>
6 <Parameter name="coarse: max size" type="int" value="10"/>
7 <Parameter name="multigrid algorithm" type="string" value="sa"/>
8

9 <!-- Jacobi -->
10 <Parameter name="smoother: type" type="string" value="RELAXATION"/>
11 <ParameterList name="smoother: params">
12 <Parameter name="relaxation: type" type="string" value="Jacobi"/>
13 <Parameter name="relaxation: sweeps" type="int" value="1"/>
14 <Parameter name="relaxation: damping factor" type="double" value="0.9"/>
15 </ParameterList>
16

17 <!-- Jacobi -->
18 <Parameter name="coarse: type" type="string" value="DIRECT"/>
19

20 </ParameterList>

That is, we change to smoothed aggregation AMG. You can find the xml file also in
xml/s1_easy_exercise.xml. Run the example on 2 processors and check the number
of linear iterations and the solver timings in the screen output. Can you find smoother
parameters which reduce the number of iterations? Can you find smoother parameters which
reduce the iteration timings? �



3. Multigrid for non-symmetric problems

3.1 Test example

The Recirc2D example uses a matrix corresponding to the finite-difference discretization of the
problem

−ε∆u + (vx, vy) · ∇u = f

on the unit square, with ε = 1e − 5 and homogeneous Dirichlet boundary conditions. It is
vx = 4x(x− 1)(1− 2y) and vy = −4y(y− 1)(1− 2x). The right hand side vector f is chosen to be
the constant vector 1. Due to the convective term the resulting linear system is non-symmetric
and therefore more challenging for the iterative solver. The multigrid algorithm has to be adapted
to the non-symmetry to obtain good convergence behavior.

3.2 User interface

For this tutorial again we can use the easy-to-use user interface. Run the hands-on.py script
in your terminal and choose option 2 for the Recirc 2D example on a 50 × 50 mesh. Choose
the parameters from the n1_easy.xml file. If you run the example you might find that the CG
method did not converge within 50 iterations.
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The convergence of the used unsmoothed transfer operators (multigrid algorithm =
unsmoothed) is not optimal. In case of symmetric problems one can reduce the number of
iterations using smoothed aggregation algebraic multigrid methods. In context of non-symmetric
problems, especially when arising from problems with (highly) convective phenomena, one should
use a Petrov-Galerkin approach for smoothing the prolongation and restriction operators more
carefully.

Exercise 3.1 Use multigrid algorithm = pg and compare the results with multigrid
algorithm = unsmoothed. What is the difference in the number of CG iterations? What is
changing in the multigrid setup? �

Exercise 3.2 For slightly non-symmetric problems the sa method often performs satisfactorily.
Change the verbosity to high (verbosity = high) and compare the results of the multigrid
algorithm = pg option with the multigrid algorithm = sa option. Try different values
between 0 and 1.5 for the damping parameter within the smoothed aggregation method (i.e.,
try values 0.0, 0.5, 1.0, 1.33 and 1.5 for sa: damping factor). What do you observe? �



4. Useful tools for analysis

4.1 Visualization of aggregates
4.1.1 Technical prerequisites

MueLu allows to export plain aggregation information in simple text files that have to be
interpreted by some post-processing scripts to generate pictures from the raw data. The post-
processing script provided with the MueLu tutorial is written in python and produces VTK
output. Please make sure that you have all necessary python packages installed on your machine
(including python-vtk).

* The visualization script has successfully been tested with VTK 5.x. Note that it is not
compatible to VTK 6.x.

4.1.2 Visualization of aggregates with MUELU using VTK
We can visualize the aggregates using the vtk file format and paraview. First add the parameter
aggregation: export visualization data = true to the list of aggregation parameters.
Use, e.g., the following xml file

1 <ParameterList name="MueLu">
2

3 <Parameter name="verbosity" type="string" value="high"/>
4

5 <Parameter name="max levels" type="int" value="3"/>
6 <Parameter name="coarse: max size" type="int" value="10"/>
7

8 <Parameter name="multigrid algorithm" type="string" value="pg"/>
9 <Parameter name="sa: damping factor" type="double" value="1.33333"/>

10

11 <Parameter name="smoother: type" type="string" value="RELAXATION"/>
12 <ParameterList name="smoother: params">
13 <Parameter name="relaxation: type" type="string" value="Gauss-Seidel"/>
14 <Parameter name="relaxation: sweeps" type="int" value="3"/>
15 <Parameter name="relaxation: damping factor" type="double" value="0.7"/>
16 </ParameterList>
17

18 <!-- Aggregation -->
19 <Parameter name="aggregation: type" type="string" value="uncoupled"/>
20 <Parameter name="aggregation: min agg size" type="int" value="3"/>
21 <Parameter name="aggregation: max agg size" type="int" value="9"/>
22 <Parameter name="aggregation: export visualization data" type="bool" value="true"/>
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23

24 </ParameterList>

The file is stored in xml/n2_easy_agg.xml.

Run the hands-on.py script and select, e.g., the Laplace 2D example on a 50×50 mesh. Select
above xml file for the multigrid parameters with the aggregation: export visualization
data enabled. Run the program and then choose option 7 for post-processing the aggregates.

* Be aware that without aggregation: export visualization data = true the post pro-
cessing step for the aggregates will fail.

Once the visualization data is exported and post-processed you can run paraview (if it is
installed on your machine) and open the files aggs0.vtp and aggs1.vtp for visualization.

Start paraview and open the files aggs0.vtp and/or aggs1.vtp. Do not forget to press the
Apply button to show the aggregates on screen.
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Then the aggregates should be visualized as follows.

Here the colors represent the unique aggregate id. You can change the coloring in the left column
from Ids to proc which denotes the owning processor of the aggregate.

Figure 4.1 shows the aggregates for the Laplace2D problem on the different multigrid levels
starting with an isotropic 50× 50 mesh. No dropping of small entries was used when building
the matrix graph (aggregation: drop tol=0.0). For visualization purposes the “midpoint”
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Figure 4.1: Aggregates for Laplace2D example on 50× 50 mesh without dropping.

Figure 4.2: Aggregates for Recirc2D example on 50× 50 mesh with dropping.

of each aggregate defines the coordinate of the supernode on the next coarser level. Be aware
that these supernodes are purely algebraic. There is no coarse mesh for algebraic multigrid
methods. As one can see from the colors an uncoupled aggregation strategy has been applied
using 2 processors. The aggregates do not cross the processor boundaries.

Exercise 4.1 Repeat above steps for the Recirc2D example on a 50× 50 mesh. Compare the
aggregates from the xml/n2_easy_agg.xml parameter file with the aggregates when using
the xml/n2_easy_agg2.xml parameter file, which drops some small entries of the fine level
matrix A when building the graph. �

Exercise 4.2 Vary the number of processors. Do not forget to export the aggregation data
(option 7) after the simulation has rerun with a new number of processors. In paraview
choose the variable proc for the coloring. Then the color denotes the processor the aggregate
belongs to. How do the aggregates change when switching from 2 to 3 processors? �

Figure 4.2 shows the aggregates for the Recirc2D problem. When building the matrix graph,
entries with values smaller than 0.01 were dropped. Obviously the shape of the aggregates
follows the direction of convection of the example. Using an uncoupled aggregation method (i.e.,
aggregation: type = uncoupled) as default the aggregates do not cross processor boundaries.

Note on coupled aggregation strategy:

Comparing Figures 4.1 and 4.3 one finds the difference between the uncoupled and the coupled
aggregation method (aggregation: type). For the coupled aggregation strategy the aggre-
gates can overlap processor boundaries.

* Using the coupled aggregation in general is not recommended, since
- the aggregation routine itself needs some global communication,
- building the tentative prolongation operator from the aggregates needs some global com-
munication,

- prolongator smoothing is more expensive due to a higher overlap.
The implementation of a coupled aggregation method is much more complicated and therefore
error-prone and less robust.
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Figure 4.3: Aggregates for Laplace2D example on 50×50 mesh without dropping using a coupled
aggregation strategy.

4.2 Export data
For debugging purposes it can be very helpful to have a look at the coarse level matrices as well
as the transfer operators. MueLu allows to export the corresponding operators to the matrix
market format such that the files can be imported, e.g., into MATLAB (or Scilab) for some
in-depth analysis.

Using the following xml file writes the fine level operator and the coarse level operator as well
as the prolongation and restriction operator to the hard disk using the filenames A_0.m, A_1.m
as well as P_1.m and R_1.m

1 <ParameterList name="MueLu">
2

3 <Parameter name="verbosity" type="string" value="high"/>
4

5 <Parameter name="max levels" type="int" value="3"/>
6 <Parameter name="coarse: max size" type="int" value="10"/>
7

8 <Parameter name="multigrid algorithm" type="string" value="unsmoothed"/>
9

10 <Parameter name="smoother: type" type="string" value="RELAXATION"/>
11 <ParameterList name="smoother: params">
12 <Parameter name="relaxation: type" type="string" value="Gauss-Seidel"/>
13 <Parameter name="relaxation: sweeps" type="int" value="3"/>
14 <Parameter name="relaxation: damping factor" type="double" value="0.7"/>
15 </ParameterList>
16

17 <!-- Export data -->
18 <ParameterList name="export data">
19 <Parameter name="A" type="string" value="{0,1}"/>
20 <Parameter name="P" type="string" value="{0,1}"/>
21 <Parameter name="R" type="string" value="{0}"/>
22 </ParameterList>
23 </ParameterList>

* Be aware that there is no prolongator and restrictor on the finest level (level 0) since the
transfer operators between level ` and ` + 1 are always associated with the coarse level ` + 1 (for
technical reasons). So, be not confused if there is no P_0.m and R_0.m. Only the operators are
written to external files which really exist and are requested in the corresponding list in the xml
parameters.

The exported files can easily imported into MATLAB and used for some in-depth analysis
(determining the eigenvalue spectrum, sparsity pattern,. . . ).





5. Challenge: CD example

5.1 Practical example
Often one has only very rough information about the linear system that is supposed to be
effectively solved using iterative methods with multigrid preconditioners. Therefore, it is highly
essential to gain some experience with the solver and preconditioner parameters and learn to
optimize the multigrid parameters just by looking at the convergence behavior of the linear
solver.

Here, we consider a convection-diffusion example with 16641 degrees of freedom. No further
information is provided (geometry, discretization technique, . . . ).

5.2 User-interface
Run the hands-on.sh script and choose the option 4 for the convection-diffusion example. The
script automatically generates a XML file with reference multigrid parameters which are far from
being optimal.
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When using the reference settings for the multigrid preconditioner we need 94 linear iterations.
The challenge is to find optimized multigrid settings which results in a significantly lower number
of linear iterations and – even more important – a lower computational time.

* Please notice that we have automatically chosen GMRES as solver as the linear systems
arising from convection-diffusion problems are non-symmetric (due to the convective term). A
CG methods would not converge.

Exercise 5.1 Open the condif2d_parameters.xml file by pressing option 3. Try to find
optimized multigrid settings using your knowledge from the previous tutorials. Save the file
and rerun the example (using option 0). Compare your results with the reference results.
With option 6 you can plot the convergence of the relative residual of the iterative solver (for
comparison). �

5.3 General hints
There is a very simple strategy for optimizing the solver and preconditioner parameters iteratively
that works for many examples surprisingly well.

5.3.1 Linear solver settings
The parameters for the linear solver usually are fixed. Just make sure that you consider the non-
symmetry in the choice of your iterative method and choose the solver tolerance in a reasonable
way. Before you think about finding good preconditioner parameters you should be absolutely
sure that your linear solver is chosen appropriately for your problem.

5.3.2 General multigrid settings
Next, one should choose the multigrid settings. This includes the desired number of multigrid
levels and the stopping criterion for the coarsening process. An appropriate choice here is mainly
dominated by the size of the problem and the discretization. The multigrid parameters should
be chosen such that one obtains a reasonably small problem on the coarsest level which is solved
directly.

5.3.3 Transfer operators
Then, one should think about the transfer operators. In the symmetric case one can try smoothed
aggregation transfer operators. If unsure, the non-smooth transfer operators always should be a
safe and robust starting point.

5.3.4 Level smoothers
Once the multigrid skeleton is fixed by the choice of transfer operators one can start with
optimizing the level smoothers. When using relaxation based level smoothers one should first
try different smoothing parameters and increase the number of smoothing sweeps only when
necessary.

5.3.5 Fine tuning
Sometimes it is very helpful to have a look at the multigrid matrices. First of all, one should
check whether the aggregation is working properly. This can be done by checking the screen
output for the coarsening rate and the aggregation details (this is often the only way to do it
if aggregates cannot be visualized due to missing node coordinates). If there is some problem
with the aggregation one should try to adapt the aggregation parameters. Here it might make
sense to export the coarse level matrices first and study their properties. For finding aggregation
parameters one should, e.g., check the number of non-zeros in each row and choose the minimum
aggregation size accordingly.



Advanced topics





6. XML interface for advanced users

This tutorial introduces the more advanced (and more flexible) XML interface that can be used
for setting up multigrid hierarchies in MueLu. Again we use the 2D Laplace problem on a
50×50 mesh as introduced in §1.1. That is, in the hands-on.py script you have to choose option
0 for the problem type.

6.1 One-level method
Before applying a multigrid method as solver, we start with a simple Jacobi iteration as solver
and look at the error. By setting the maximum number of multigrid levels to 1 and using a
Jacobi smoother as coarse solver we obtain a pseudo multigrid method which corresponds to a
simple Jacobi iteration.

1 <ParameterList name="MueLu">
2

3 <!-- Factory collection -->
4 <ParameterList name="Factories">
5

6 <!-- Note that ParameterLists must be defined prior to being used -->
7 <ParameterList name="myJacobi">
8 <Parameter name="factory" type="string" value="

TrilinosSmoother"/>
9 <Parameter name="type" type="string" value="RELAXATION"/>

10 <ParameterList name="ParameterList">
11 <Parameter name="relaxation: type" type="string" value="Jacobi"/>
12 <Parameter name="relaxation: sweeps" type="int" value="1"/>
13 <Parameter name="relaxation: damping factor" type="double" value="0.9"/>
14 </ParameterList>
15 </ParameterList>
16 </ParameterList>
17

18 <!-- Definition of the multigrid preconditioner -->
19 <ParameterList name="Hierarchy">
20

21 <Parameter name="max levels" type="int" value="1"/>
22 <Parameter name="coarse: max size" type="int" value="10"/>
23 <Parameter name="verbosity" type="string" value="Low"/>
24

25 <ParameterList name="All">
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26 <Parameter name="Smoother" type="string" value="myJacobi"/>
27 <Parameter name="CoarseSolver" type="string" value="myJacobi"/>
28 </ParameterList>
29

30 </ParameterList>
31 </ParameterList>

The advanced XML format is more hierarchical in the structure. Each XML file in the advanced
format consists of two major blocks. First there is a set of “Factory” blocks which describe the
building blocks within your multigrid methods. In above example there is only one building
block specified for the Jacobi method. Each building block needs a (unique) name. In above
example the building block has the name myJacobi. It is a factory of type TrilinosSmoother
and describes a damped Jacobi method as declared by the internal parameters.

Later we will see examples for other building blocks describing transfer operators or the
aggregation strategy. In the “Factories” list, the user has to declare all building blocks of the
multigrid method that are used for the setup. The user cannot specify all building blocks involved
in the setup process. MueLu will take care of that and use default building blocks for all parts
of the setup process where the user makes no explicit statement. This way the user only has to
describe what he explicitly needs.

It is not sufficient just to declare some building blocks. One also has to register them in the
setup process. This is done in the second part of the XML file. The so-called Hierarchy block
describes the setup process. First there are some basic multigrid parameters that are well-known
from the easy XML interface (cf. the previous tutorials). Then, there is an additional list of
parameters All which encapsulates the information which factory block is responsible to provide
certain data. In above example you can see, that the building block myJacobi shall be used
both for the level smoother and the coarse solver. Since it is only a 1 level problem it would be
sufficient to define a coarse solver only. The name of the parameter list All can be chosen by the
user. It basically describes the user-specified parts of the setup process for all multigrid levels.
In this case we just overwrite the internal default factories both for the level smoother and the
coarse solver by our Jacobi smoother.

* Be aware that we can have different parameter list sets for different levels, that is, we can
use different factories on certain levels.

Exercise 6.1 Run the hands-on.py script and choose the XML file xml/s2_adv_a.xml which
contains above XML parameters. Use only 1 processor and visualize the error for an increasing
number of multigrid cycles (e.g. 1, 5, 10, 30, 100). What do you observe? �

Exercise 6.2 Note that the relaxation based smoothers are based on a Schwarz method (see
Ifpack documentation). Repeat above steps using 2 processors. What do you observe in the
error plots? �

6.2 Multigrid method

The next step is to introduce a full multigrid algorithm. First one should increase the number of
multigrid levels. Second, we switch to a direct solver on the coarsest level.

Exercise 6.3 Create your own copy of the xml/s2_adv_a.xml parameter file. Adapt it to
obtain a 3 level multigrid method. Check how this affects the error plots. �

Exercise 6.4 Change to a direct solver on the coarsest level. You can do this by using
<Parameter name="CoarseSolver" type="string" value="DirectSolver"/> in the Hi-
erarchy block of the xml file. Check the output of the multigrid hierarchy. �
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6.3 Level smoothers
Next, we give some building blocks for different types of level smoothers that you can use. Note
that all these xml blocks can be put into the Factories block of the advanced MueLu XML file
format. Then you can use them by adding the corresponding link into the Hierarchy block using
the name of the parameter block.
• Chebyshev smoother:

1 <ParameterList name="Chebyshev">
2 <Parameter name="factory" type="string" value="

TrilinosSmoother"/>
3 <Parameter name="type" type="string" value="

CHEBYSHEV"/>
4

5 <ParameterList name="ParameterList">
6 <Parameter name="chebyshev: degree" type="int" value="2"/>>
7 <Parameter name="chebyshev: ratio eigenvalue" type="double" value="20"/>
8 <Parameter name="chebyshev: min eigenvalue" type="double" value="1.0"/>
9 <Parameter name="chebyshev: zero starting solution" type="bool" value="true

"/>
10 </ParameterList>
11 </ParameterList>

• Jacobi smoother:

1 <ParameterList name="myJacobi">
2 <Parameter name="factory" type="string" value="

TrilinosSmoother"/>
3 <Parameter name="type" type="string" value="

RELAXATION"/>
4 <ParameterList name="ParameterList">
5 <Parameter name="relaxation: type" type="string" value="Jacobi

"/>
6 <Parameter name="relaxation: sweeps" type="int" value="1"/>
7 <Parameter name="relaxation: damping factor" type="double" value="0.9"/>
8 </ParameterList>
9 </ParameterList>

• Gauss–Seidel smoother variants:

1 <ParameterList name="SymGaussSeidel">
2 <Parameter name="factory" type="string" value="

TrilinosSmoother"/>
3 <Parameter name="type" type="string" value="

RELAXATION"/>
4 <ParameterList name="ParameterList">
5 <Parameter name="relaxation: type" type="string" value="

Symmetric Gauss-Seidel"/>
6 <Parameter name="relaxation: sweeps" type="int" value="1"/>
7 <Parameter name="relaxation: damping factor" type="double" value="1.0"/>
8 </ParameterList>
9 </ParameterList>

1 <ParameterList name="ForwardGaussSeidel">
2 <Parameter name="factory" type="string" value="

TrilinosSmoother"/>
3 <Parameter name="type" type="string" value="

RELAXATION"/>
4

5 <ParameterList name="ParameterList">
6 <Parameter name="relaxation: type" type="string" value="Gauss-

Seidel"/>
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7 <Parameter name="relaxation: backward mode" type="bool" value="false"/>
8 <Parameter name="relaxation: sweeps" type="int" value="2"/>
9 <Parameter name="relaxation: damping factor" type="double" value="1"/>

10 </ParameterList>
11 </ParameterList>

1 <ParameterList name="BackwardGaussSeidel">
2 <Parameter name="factory" type="string" value="

TrilinosSmoother"/>
3 <Parameter name="type" type="string" value="

RELAXATION"/>
4

5 <ParameterList name="ParameterList">
6 <Parameter name="relaxation: type" type="string" value="Gauss-

Seidel"/>
7 <Parameter name="relaxation: backward mode" type="bool" value="true"/>
8 <Parameter name="relaxation: sweeps" type="int" value="2"/>
9 <Parameter name="relaxation: damping factor" type="double" value="1"/>

10 </ParameterList>
11 </ParameterList>

Beside above level smoothers there are more level smoothers such as ILU methods.

Exercise 6.5 Pick out one level smoother from above and use them for your problem. Note
that you may have to adapt the relaxation: damping factor for reasonable results. �

6.4 Advanced features
MueLu allows full control over the behavior of the multigrid levels. Here, we demonstrate the
capabilities of MueLu using the level smoothers. Take a look at the following example XML
parameter list

1 <ParameterList name="MueLu">
2

3 <!-- Factory collection -->
4 <ParameterList name="Factories">
5

6 <!-- Note that ParameterLists must be defined prior to being used -->
7 <ParameterList name="BackwardGaussSeidel">
8 <Parameter name="factory" type="string" value="TrilinosSmoother

"/>
9 <Parameter name="type" type="string" value="RELAXATION"/>

10

11 <ParameterList name="ParameterList">
12 <Parameter name="relaxation: type" type="string" value="Gauss-Seidel

"/>
13 <Parameter name="relaxation: backward mode" type="bool" value="true"/>
14 <Parameter name="relaxation: sweeps" type="int" value="50"/>
15 <Parameter name="relaxation: damping factor" type="double" value="0.6"/>
16 </ParameterList>
17 </ParameterList>
18 </ParameterList>
19

20 <!-- Definition of the multigrid preconditioner -->
21 <ParameterList name="Hierarchy">
22

23 <Parameter name="max levels" type="int" value="4"/>
24 <Parameter name="coarse: max size" type="int" value="10"/>
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25 <Parameter name="verbosity" type="string" value="Low"/>
26

27 <ParameterList name="Finest">
28 <Parameter name="PreSmoother" type="string" value="BackwardGaussSeidel"/>
29 <Parameter name="PostSmoother" type="string" value="NoFactory"/>
30 <Parameter name="CoarseSolver" type="string" value="DirectSolver"/>
31

32 </ParameterList>
33

34 <ParameterList name="Remaining">
35 <Parameter name="startLevel" type="int" value="1"/>
36 <Parameter name="PreSmoother" type="string" value="NoFactory"/>
37 <Parameter name="PostSmoother" type="string" value="BackwardGaussSeidel"/>
38 <Parameter name="CoarseSolver" type="string" value="DirectSolver"/>
39 </ParameterList>
40

41 </ParameterList>
42 </ParameterList>

You can find the parameters in xml/s2_adv_b.xml. We have one building block Back-
wardGaussSeidel representing the level smoother that we want to use in our multigrid hierarchy.
As one can see from the Hierarchy block we request a 4 level multigrid method. There are two
blocks called Finest and Remaining describing the behavior of the different multigrid levels. Note
the startLevel parameter in the block Remaining. This parameter is missing in the Finest block
(where it is assumed to be the default value which is zero). That is, in this example we use the
backward Gauss–Seidel method as pre-smoother on the finest level (note the keyword NoFactory
for PostSmoother). The parameter startLevel=1 in the Remaining block means that for level
1 and all coarser levels (unless there is another block with startLevel > 1) the building blocks
from Remaining shall be used for the multigrid setup. That is, on the multigrid levels 1 and 2
the backward Gauss–Seidel method is used for post smoothing only. The corresponding multigrid
hierarchy has the form

1 Number of levels = 4
2 Operator complexity = 1.73
3

4 matrix rows nnz nnz/row procs
5 A 0 10000 49600 4.96 2
6 A 1 1700 35024 20.60 2
7 A 2 80 1328 16.60 2
8 A 3 4 16 4.00 2
9

10 Smoother (level 0) pre : IFPACK (Local Backward GS, sweeps=50, damping=0.6)
11 Smoother (level 0) post : no smoother
12

13 Smoother (level 1) pre : no smoother
14 Smoother (level 1) post : IFPACK (Local Backward GS, sweeps=50, damping=0.6)
15

16 Smoother (level 2) pre : no smoother
17 Smoother (level 2) post : IFPACK (Local Backward GS, sweeps=50, damping=0.6)
18

19 Smoother (level 3) pre : MueLu::AmesosSmoother{type = Superlu}
20 Smoother (level 3) post : no smoother

created with MueLu version 4614738

Exercise 6.6 Create an XML file in advanced format which produces the following multigrid
layout

1 Number of levels = 4
2 Operator complexity = 1.73
3



42 Chapter 6. XML interface for advanced users

4 matrix rows nnz nnz/row procs
5 A 0 10000 49600 4.96 2
6 A 1 1700 35024 20.60 2
7 A 2 80 1328 16.60 2
8 A 3 4 16 4.00 2
9

10 Smoother (level 0) both : IFPACK (Local Jacobi, sweeps=5, damping=0.6)
11

12 Smoother (level 1) pre : IFPACK (Local GS, sweeps=3, damping=0.6)
13 Smoother (level 1) post : IFPACK (Local Backward GS, sweeps=3, damping=0.6)
14

15 Smoother (level 2) both : IFPACK (Local SGS, sweeps=3, damping=0.7)
16

17 Smoother (level 3) pre : MueLu::AmesosSmoother{type = Superlu}
18 Smoother (level 3) post : no smoother

created with MueLu version 4614738 .
Hint: create a copy of the file xml/s2_adv_b.xml and extend it accordingly. A possible

solution can be found in xml/s2_adv_c.xml. �
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For this example we reuse the Recirc2D example as introduced in §3.1. The resulting linear
systems are (slightly) non-symmetric and classical smoothed aggregation methods may be able
to solve the problem but are not optimal in sense of convergence.

7.1 Multigrid setup phase – algorithmic design
Smoothed aggregation based algebraic multigrid methods originally have not been designed for
non-symmetric linear systems. Inappropriately smoothed transfer operators may significantly
deteriorate the convergence rate or even break convergence completely.

7.1.1 Unsmoothed transfer operators
Before we introduce smoothed aggregation methods for non-symmetric linear systems we first go
back one step and demonstrate how to use non-smoothed transfer operators which are eligible for
non-symmetric linear systems. Figure 7.1(a) gives a simplified example how to build the coarse
level matrix Ac using the fine level matrix A only. First, we “somehow” build aggregates using
the information of the fine level matrix A. The aggregates are then used to build the tentative
non-smoothed prolongation operator. The restrictor is just the transpose of the (tentative)
prolongator and finally the coarse level matrix Ac is calculated by the triple product Ac = RAP .

In Figure 7.1(b) the SaPFactory has been added after the TentativePFactory. Therein the
non-smoothed transfer operator from the TentativePFactory is smoothed using information of
the fine level matrix A. This transfer operator design is used per default when the user does not
specify its own transfer operator design. The default settings are optimal for symmetric positive
definite systems. However for our non-symmetric problem they might be problematic.

7.1.2 Smoothed transfer operators for non-symmetric systems
In case of non-symmetric linear systems it is A 6= AT . Therefore it is a bad idea just to use the
transposed of the smoothed prolongation operator for the restrictor. Let P̂ be the non-smoothed
tentative prolongation operator. Then the smoothed prolongation operator P is built using

P =
(
I − ωA

)
P̂ ,

with some reasonable smoothing parameter ω > 0. The standard restrictor is

R = PT = P̂T − ωP̂TAT = P̂T
(
I − ωAT

)
.

That is, the restrictor would be smoothed using the information of AT . However, for non-
symmetric systems we want to use the information of matrix A for smoothing the restriction
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AggregationFactory

TentativePFactory TransPFactory

RAPFactory
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Aggregates
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R

(a) Non-smoothed aggregation based AMG

A
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AggregationFactory

TentativePFactory

SaPFactory TransPFactory
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Aggregates
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P
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(b) Smoothed aggregation AMG (SA-AMG)

Figure 7.1: Simple factory design for aggregation based algebraic multigrid methods.
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AT
Aggregates
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Figure 7.2: Simple factory design for smoothed aggregation based algebraic multigrid methods
for non-symmetric systems.

operator, too. The restriction operator shall we built by the formula

R = PT = P̂T − ωP̂TA.

This corresponds to apply the same smoothing strategy to the non-smoothed restriction operator
R̂ = P̂T which is applied to the (tentative) prolongation operator with using AT as input
instead of matrix A. Figure 7.2 shows the changed factory design. The dashed line denotes,
that the same smoothing strategy is used than for the prolongation operator. The concept is
known as Petrov-Galerkin smoothed aggregation approach in the literature. A more advanced
transfer operator smoothing strategy for non-symmetric linear systems that is based on the
Petrov-Galerkin approach is described in [4]. Another approach based on SchurComplement
approximations can be found in [5].
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7.2 XML interface
7.2.1 Unsmoothed transfer operators

To construct a multigrid hierarchy with unsmoothed transfer operators one can use the following
XML file (stored in xml/s3a.xml)

1 <ParameterList name="MueLu">
2

3 <!-- Factory collection -->
4 <ParameterList name="Factories">
5

6 <ParameterList name="UncoupledAggregationFact">
7 <Parameter name="factory" type="string" value="

UncoupledAggregationFactory"/>
8 <Parameter name="aggregation: ordering" type="string" value="natural

"/>
9 <Parameter name="aggregation: max selected neighbors" type="int" value="0"/>

10 <Parameter name="aggregation: min agg size" type="int" value="4"/>
11 </ParameterList>
12

13 <ParameterList name="myTentativePFact">
14 <Parameter name="factory" type="string" value="TentativePFactory

"/>
15 </ParameterList>
16

17 </ParameterList>
18

19 <!-- Definition of the multigrid preconditioner -->
20 <ParameterList name="Hierarchy">
21

22 <Parameter name="max levels" type="int" value="10"/>
23 <Parameter name="coarse: max size" type="int" value="10"/>
24 <Parameter name="verbosity" type="string" value="High"/>
25

26 <ParameterList name="All">
27 <Parameter name="Aggregates" type="string" value="UncoupledAggregationFact

"/>
28 <Parameter name="Nullspace" type="string" value="myTentativePFact"/>

29 <Parameter name="P" type="string" value="myTentativePFact"/>

30 <Parameter name="CoarseSolver" type="string" value="DirectSolver"/>
31 </ParameterList>
32

33 </ParameterList>
34 </ParameterList>

Beside the TentativePFactory which is responsible to generate the unsmoothed transfer
operators we also introduce the UncoupledAggregationFactory with this example. In the
Factories section of the XML file you find both an entry for the aggregation factory and the
prolongation operator factory with its parameters. In the Hierarchy section the defined fac-
tories are just put in into the multigrid setup algorithm. That is, the factory with the name
UncoupledAggregationFact is used to generate the Aggregates and the myTentativePFact is
responsible for generating both the (unsmoothed) prolongation operator P and the (coarse) near
null space vectors Nullspace.

* Be aware that it is highly important not to forget to register the myTentativePFact object
for generating null space Nullspace. It is not visualized in the dependency trees, but the
TenativePFactory factory both generates the unsmoothed prolongation operator and the set of
near null space vectors for the coarse level. So, if you declare your own explicit instance of a



46 Chapter 7. MUELU factories for transfer operators

TentativePFactory you always have to register it for the near null space, too. In general it is a
good idea to register a factory in the Hierarchy sublist for all output variables of the factory.

* Note that one can also use the Ptent variable for registering a TentativePFactory. This
makes the TentativePFactory somewhat special in its central role for generating an aggregation
based multigrid hierarchy. MueLu is smart enough to understand that you want to use the
near null space vectors generated by the factory registered as Ptent for setting up the transfer
operators.

That is, the following code would explicitly use the TentativePFactory object that is created
as myTentativePFact. Since no factory is specified for the prolongation operator P MueLu would
decide to use a smoothed aggregation prolongation operator (represented by the SaPFactory)
which correctly uses the factory for Ptent for the unsmoothed transfers with all its dependencies.

1 <ParameterList name="MueLu">
2 <ParameterList name="Factories">
3 <ParameterList name="myTentativePFact">
4 <Parameter name="factory" type="string" value="TentativePFactory"/>
5 </ParameterList>
6 </ParameterList>
7

8 <ParameterList name="Hierarchy">
9 <ParameterList name="Levels">

10 <Parameter name="Ptent" type="string" value="myTentativePFact"/>
11 </ParameterList>
12 </ParameterList>
13 </ParameterList>

Exercise 7.1 Create a sublist in the Factories part of the XML file for the restriction operator
factory. Use a TransPFactory which builds the transposed of P to generate the restriction
operator R. Register your restriction factory in the Hierarchy section to generate the variable
R. �

7.2.2 Smoothed aggregation for non-symmetric problems
Next, let’s try smoothed transfer operators for the non-symmetric linear system and compare
the results of the transfer operator designs. Take a look at the XML file (in xml/s3b.xml).

1 <ParameterList name="MueLu">
2

3 <!-- Factory collection -->
4 <ParameterList name="Factories">
5

6 <!-- Note that ParameterLists must be defined prior to being used -->
7

8 <ParameterList name="UncoupledAggregationFact">
9 <Parameter name="factory" type="string" value="

UncoupledAggregationFactory"/>
10 <Parameter name="aggregation: ordering" type="string" value="natural"/>
11 <Parameter name="aggregation: max selected neighbors" type="int" value="0"/>
12 <Parameter name="aggregation: min agg size" type="int" value="4"/>
13 </ParameterList>
14

15 <ParameterList name="myTentativePFact">
16 <Parameter name="factory" type="string" value="

TentativePFactory"/>
17 </ParameterList>
18 <ParameterList name="myProlongatorFact">
19 <Parameter name="factory" type="string" value="SaPFactory"/>

20 <Parameter name="P" type="string" value="
myTentativePFact"/>
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21 <Parameter name="sa: damping factor" type="double" value="1.0"/>
22 </ParameterList>
23 <ParameterList name="myTentRestrictorFact">
24 <Parameter name="factory" type="string" value="

TransPFactory"/>
25 <Parameter name="P" type="string" value="

myTentativePFact"/>
26 </ParameterList>
27 <ParameterList name="mySymRestrictorFact">
28 <Parameter name="factory" type="string" value="

TransPFactory"/>
29 <Parameter name="P" type="string" value="

myProlongatorFact"/>
30 </ParameterList>
31 <ParameterList name="myNonsymRestrictorFact">
32 <Parameter name="factory" type="string" value="

GenericRFactory"/>
33 <Parameter name="P" type="string" value="

myProlongatorFact"/>
34 </ParameterList>
35

36

37 <ParameterList name="SymGaussSeidel">
38 <Parameter name="factory" type="string" value="

TrilinosSmoother"/>
39 <Parameter name="type" type="string" value="RELAXATION"/>

40 <ParameterList name="ParameterList">
41 <Parameter name="relaxation: type" type="string" value="Symmetric

Gauss-Seidel"/>
42 <Parameter name="relaxation: sweeps" type="int" value="10"/>
43 <Parameter name="relaxation: damping factor" type="double" value="0.8"/>
44 </ParameterList>
45 </ParameterList>
46

47 </ParameterList>
48

49 <!-- Definition of the multigrid preconditioner -->
50 <ParameterList name="Hierarchy">
51

52 <Parameter name="max levels" type="int" value="10"/>
53 <Parameter name="coarse: max size" type="int" value="10"/>
54 <Parameter name="verbosity" type="string" value="High"/>
55

56 <ParameterList name="All">
57 <Parameter name="Smoother" type="string" value="SymGaussSeidel"/>
58 <Parameter name="Aggregates" type="string" value="

UncoupledAggregationFact"/>
59 <Parameter name="Nullspace" type="string" value="myTentativePFact"/>
60 <Parameter name="P" type="string" value="myProlongatorFact

"/>
61 <Parameter name="R" type="string" value="mySymRestrictorFact

"/>
62 <Parameter name="CoarseSolver" type="string" value="DirectSolver"/>
63 </ParameterList>
64

65 </ParameterList>
66 </ParameterList>

The interesting part is the Factories section where several different factories for the restriction
operator are defined
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myTentRestrictorFact: just uses the transposed of the unsmoothed prolongator for restriction.
mySymRestrictorFact: uses the transposed of the smoothed prolongator for restriction.
myNonsymRestrictorFact: uses the special non-symmetric smoothing for the restriction

operator (based on the SaPFactory smoothing factory).

* The MueLu framework is very flexible and allows for arbitrary combinations of fac-
tories. However, be aware that the TentativePFactory cannot be used as input for the
GenericRFactory. That is no problem since this combination not really makes sense. If you are
using the TentativePFactory as your final prolongation operator you always have to use the
TransPFactory for generating the restriction operators.

Exercise 7.2 Run the Recirc2D example with the different restriction operator strategies and
compare the results for the iterative solver. What do you observe? What is the best choice
for the transfer operators in the non-symmetric case? �

Exercise 7.3 Change the myProlongatorFact from type SaPFactory to PgPFactory which
uses automatically calculated local damping factors instead of a global damping factor (with
some user parameter sa: damping factor). Note that the PgPFactory might not accept
the sa: damping factor parameter such that you have to comment it out (using <!– ...
–>). �

Exercise 7.4 Try to set up a multigrid hierarchy with unsmoothed transfer operators for the
transition from the finest level to level 1 and then use smoothed aggregation for the coarser
levels (starting from level 1). �



8. Rebalancing - Hypergraph repartitioning

8.1 Basic concepts and parameters
It’s a natural thing to use lesser processors for the coarse level problem than for the fine level
problem. This is an elegant way to avoid the problems of the coupled aggregation strategy, by
just using the uncoupled aggregation strategy with rebalancing on the coarser levels.

In this tutorial we use a hypergraph based repartitioning for the coarse level matrices Ac to
rebalance the problem. The repartitioning algorithm is implemented in the Zoltan package of
Trilinos. The advantage of the hypergraph based repartitioning methods is, that they do not
need additional information such as node coordinates and therefore are the consequent choice
within algebraic multigrid preconditioners.

* Hypergraph partitioning algorithms as PHG are not available in the new Zoltan2 package
of Trilinos, yet. Therefore we can use this type of repartitioning only in context of Epetra
based applications. If you use the new templated Tpetra stack you have to use repartitioning
algorithms which are available in Zoltan2 such as RCB.

Repartitioning algorithms are a very wide field of research and can be very complicated. Here,
we cannot go into details and just focus on how to use them. Basically there are only a few really
important parameters that the user has to set properly:
repartition: min rows per proc the minimum number of rows each processor shall handle.

This parameter is used to reduce the number of involved processors on the coarser levels. If
for example the parameter value is chosen to be 1000 and the fine level problem has 10000
rows whereas the coarse level problem has 2000 rows, then the fine level problem is solved
on not more than 10 processors at maximum and for the coarse level problem there are not
more processors than at maximum 2 being used.

repartition: max imbalance This parameter defines the maximum allowed imbalance ratio
of nonzeros on all processors. If the value is set to 1.2, and there is one processor with more
than 20% nonzeros compared to another processor, than the problem will be rebalanced.

repartition: start level start rebalancing on given level and coarser levels. This allows
to avoid the costs of rebalancing on the finer levels (where it is not really necessary).

8.2 Transfer operator design
Figure 8.1 gives the extended factory design for smoothed aggregation based AMG for non-
symmetric linear systems with rebalancing enabled. Nothing has changed in the upper part where
the non-rebalanced Galerkin product has been calculated using the RAPFactory. The coarse
level matrix Ac as output from the RAPFactory then is checked for its partition and rebalanced.
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The AmalgamationFactory amalgamates the matrix, i.e. it generates some mapping be-
tween the actual degrees of freedom and the corresponding nodes or supernodes. In fact the
AmalgamationFactory is only important if there are more than one degree of freedom per node.
Otherwise the mappings are trivial to build.

The IsorropiaInterface class first builds internally the graph of the coarse level matrix
Ac using the information from the AmalgamationInformation and then calls the repartitioning
algorithm from Zoltan through the Isorropia interface1. The output is an amalgamated repar-
titioning information. Then the RepartitionInterface factory resembles the un-amalgamated
repartitioning information which is put into the RepartitionFactory.

The RepartitionFactory is the most important factory and responsible for the repartition-
ing. Therein the decision is made whether repartitioning is necessary at all. It creates the
communication “plan” that is used to rebalance the transfer operators and the coarse level matrix.

8.3 XML interface
The corresponding XML parameter file looks as

1 <ParameterList name="MueLu">
2

3 <!-- Factory collection -->
4 <ParameterList name="Factories">
5

6 <ParameterList name="myTentativePFact">
7 <Parameter name="factory" type="string" value="

TentativePFactory"/>
8 </ParameterList>
9 <ParameterList name="myProlongatorFact">

10 <Parameter name="factory" type="string" value="PgPFactory"/>

11 <Parameter name="P" type="string" value="
myTentativePFact"/>

12 </ParameterList>
13 <ParameterList name="myRestrictorFact">
14 <Parameter name="factory" type="string" value="

GenericRFactory"/>
15 <Parameter name="P" type="string" value="

myProlongatorFact"/>
16 </ParameterList>
17

18 <ParameterList name="myAggExportFact">
19 <Parameter name="factory" type="string" value="

AggregationExportFactory"/>
20 <Parameter name="Output filename" type="string" value="aggs_level%

LEVELID_proc%PROCID.out"/>
21 </ParameterList>
22

23 <ParameterList name="myRAPFact">
24 <Parameter name="factory" type="string" value="RAPFactory"/>

25 <Parameter name="P" type="string" value="
myProlongatorFact"/>

26 <Parameter name="R" type="string" value="
myRestrictorFact"/>

27 <ParameterList name="TransferFactories">
28 <Parameter name="Visualization" type="string" value="

myAggExportFact"/>
29 </ParameterList>
30 </ParameterList>

1Isorropia is a Trilinos package which provides an easy-to-use interface to many partitioning algorithms in
Zoltan.
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Figure 8.1: Factory design for smoothed aggregation based algebraic multigrid methods for
non-symmetric systems with rebalancing.
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31

32 <!-- ======================= REPARTITIONING ======================= -->
33 <!-- amalgamation of coarse level matrix -->
34 <ParameterList name="myRebAmalgFact">
35 <Parameter name="factory" type="string" value="

AmalgamationFactory"/>
36 <Parameter name="A" type="string" value="myRAPFact"/>
37 </ParameterList>
38

39 <ParameterList name="myIsorropiaInterface">
40 <Parameter name="factory" type="string" value="

IsorropiaInterface"/>
41 <Parameter name="A" type="string" value="myRAPFact"/>
42 <Parameter name="UnAmalgamationInfo" type="string" value="myRebAmalgFact"/>
43 </ParameterList>
44

45 <ParameterList name="myRepartitionInterface">
46 <Parameter name="factory" type="string" value="

RepartitionInterface"/>
47 <Parameter name="A" type="string" value="myRAPFact"/>
48 <Parameter name="AmalgamatedPartition" type="string" value="

myIsorropiaInterface"/>
49 </ParameterList>
50

51

52 <ParameterList name="myRepartitionFact">
53 <Parameter name="factory" type="string" value="

RepartitionFactory"/>
54 <Parameter name="A" type="string" value="myRAPFact"/>
55 <Parameter name="Partition" type="string" value="

myRepartitionInterface"/>
56 <Parameter name="repartition: min rows per proc" type="int" value="2000"/>
57 <Parameter name="repartition: max imbalance" type="double" value="1.1"/>
58 <Parameter name="repartition: start level" type="int" value="1"/>
59 <Parameter name="repartition: remap parts" type="bool" value="false"/>
60 </ParameterList>
61

62 <ParameterList name="myRebalanceProlongatorFact">
63 <Parameter name="factory" type="string" value="

RebalanceTransferFactory"/>
64 <Parameter name="type" type="string" value="Interpolation"/>
65 <Parameter name="P" type="string" value="myProlongatorFact

"/>
66 <Parameter name="Nullspace" type="string" value="myTentativePFact

"/>
67 </ParameterList>
68

69 <ParameterList name="myRebalanceRestrictionFact">
70 <Parameter name="factory" type="string" value="

RebalanceTransferFactory"/>
71 <Parameter name="type" type="string" value="Restriction"/>
72 <Parameter name="R" type="string" value="myRestrictorFact

"/>
73 </ParameterList>
74

75 <ParameterList name="myRebalanceAFact">
76 <Parameter name="factory" type="string" value="

RebalanceAcFactory"/>
77 <Parameter name="A" type="string" value="myRAPFact"/>
78 </ParameterList>
79
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80 <!-- ======================= SMOOTHERS ======================= -->
81 <ParameterList name="SymGaussSeidel">
82 <Parameter name="factory" type="string" value="TrilinosSmoother

"/>
83 <Parameter name="type" type="string" value="RELAXATION"/>
84 <ParameterList name="ParameterList">
85 <Parameter name="relaxation: type" type="string" value="Symmetric Gauss-

Seidel"/>
86 <Parameter name="relaxation: sweeps" type="int" value="20"/>
87 <Parameter name="relaxation: damping factor" type="double" value="1.2"/>
88 </ParameterList>
89 </ParameterList>
90

91 </ParameterList>
92

93 <!-- Definition of the multigrid preconditioner -->
94 <ParameterList name="Hierarchy">
95

96 <Parameter name="max levels" type="int" value="4"/>
97 <Parameter name="coarse: max size" type="int" value="10"/>
98 <Parameter name="verbosity" type="string" value="High"/>
99

100 <ParameterList name="All">
101 <Parameter name="Smoother" type="string" value="

SymGaussSeidel"/>
102 <Parameter name="Nullspace" type="string" value="

myRebalanceProlongatorFact"/>
103 <Parameter name="P" type="string" value="

myRebalanceProlongatorFact"/>
104 <Parameter name="R" type="string" value="

myRebalanceRestrictionFact"/>
105 <Parameter name="A" type="string" value="

myRebalanceAFact"/>
106 <Parameter name="Importer" type="string" value="

myRepartitionFact"/>
107 <Parameter name="CoarseSolver" type="string" value="DirectSolver

"/>
108 </ParameterList>
109

110 </ParameterList>
111 </ParameterList>

It is stored in xml/s5a.xml. In this example we define a smoothed aggregation transfer
operator strategy (using the PgPFactory) for non-symmetric systems. The level smoother is
chosen to be an over-relaxed symmetric Gauss–Seidel method. A direct solver is applied on the
coarsest level. Please compare the building blocks in the xml file with Figure 8.1. Be aware that
the Nullspace variable now is also generated by the myRebalanceProlongatorFact.

Exercise 8.1 Choose option 1 in the problem menu of hands-on.py to run the Laplace 2D
example on a 300× 300 mesh. Change the solver to xml/s5a.xml. Use a reasonable number
of processors. For demonstration purposes 4 processors should be fine for the 300× 300 mesh.
Run the example and check the screen output to see the effect of rebalancing. Try to visualize
the ownership of the aggregates.

* The XML parameters in xml/s5a.xml write out the aggregation data for debugging. See
the next tutorial for some more background information on aggregation and debugging.

�

You should observe a multigrid hierarchy as follows

1 Number of levels = 4



54 Chapter 8. Rebalancing - Hypergraph repartitioning

2 Operator complexity = 2.02
3

4 matrix rows nnz nnz/row procs
5 A 0 90000 448800 4.99 4
6 A 1 15296 447206 29.24 4
7 A 2 466 8525 18.29 1
8 A 3 24 178 7.42 1
9

10 Smoother (level 0) both : IFPACK (Local SGS, sweeps=20, damping=1.2)
11

12 Smoother (level 1) both : IFPACK (Local SGS, sweeps=20, damping=1.2)
13

14 Smoother (level 2) both : IFPACK (Local SGS, sweeps=20, damping=1.2)
15

16 Smoother (level 3) pre : MueLu::AmesosSmoother{type = Superlu}
17 Smoother (level 3) post : no smoother

created with MueLu version 4614738



9. Aggregation

This tutorial provides some background information about the aggregation process in MueLu.
A very detailed description of the aggregation algorithms with all internal details can be found
in [6, Chapter 3.3].

9.1 Building aggregates
The aggregates are built using the graph of the fine level matrix A. The graph is generated by the
CoalesceDropFactory. Since we still only restrict ourselves to scalar problems with one degree
of freedom per node (DofsPerNode=1), the graph of the fine level matrix is trivial to build. Figure
9.1 shows the extended transfer operator design with the additional CoalesceDropFactory.

Especially for anisotropic or non-symmetric problems it may be advantageous to drop small
entries from the graph of A and use a filtered graph for generating aggregates.

The following listing shows the definition of the myCoalesceDropFactory which drops
all values of the fine level matrix A with the absolute value smaller than 0.01. Of course,
the myCoalesceDropFactory has to be registered to generate the variable Graph, which is
used by the aggregation factory. The Graph and the variable DofsPerNode generated by the
myCoalesceDropFactory are needed as input by the UncoupledAggregationFact. Note that
the aggregation routine always works on the node-based information instead of DOF-based
information. Therefore, we first have to build the graph of A which then can be processed by
the aggregation algorithm.

1 <ParameterList name="MueLu">
2

3 <!-- Factory collection -->
4 <ParameterList name="Factories">
5

6 <!-- Note that ParameterLists must be defined prior to being used -->
7 <ParameterList name="myCoalesceDropFact">
8 <Parameter name="factory" type="string" value="

CoalesceDropFactory"/>
9 <Parameter name="lightweight wrap" type="bool" value="true"/>

10 <!-- for aggregation dropping -->
11 <Parameter name="aggregation: drop tol" type="double" value="0.01"/>
12 </ParameterList>
13

14 <ParameterList name="UncoupledAggregationFact">
15 <Parameter name="factory" type="string" value="

UncoupledAggregationFactory"/>
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Figure 9.1: Simple factory design for building aggregates.

16 <Parameter name="aggregation: ordering" type="string" value="natural"/>
17 <Parameter name="aggregation: max selected neighbors" type="int" value="0"/>
18 <Parameter name="aggregation: min agg size" type="int" value="4"/>
19 <Parameter name="Graph" type="string" value="

myCoalesceDropFact"/>
20 <Parameter name="DofsPerNode" type="string" value="

myCoalesceDropFact"/>
21 </ParameterList>
22

23 <ParameterList name="myTentativePFact">
24 <Parameter name="factory" type="string" value="

TentativePFactory"/>
25 </ParameterList>
26 <ParameterList name="myProlongatorFact">
27 <Parameter name="factory" type="string" value="PgPFactory"/>

28 <Parameter name="P" type="string" value="
myTentativePFact"/>

29 </ParameterList>
30 <ParameterList name="myRestrictorFact">
31 <Parameter name="factory" type="string" value="

GenericRFactory"/>
32 <Parameter name="P" type="string" value="

myProlongatorFact"/>
33 </ParameterList>
34

35 <ParameterList name="myAggExportFact">
36 <Parameter name="factory" type="string" value="

AggregationExportFactory"/>
37 <Parameter name="Output filename" type="string" value="aggs_level%

LEVELID_proc%PROCID.out"/>
38 <Parameter name="DofsPerNode" type="string" value="

myCoalesceDropFact"/>
39 </ParameterList>
40

41 <ParameterList name="myRAPFact">
42 <Parameter name="factory" type="string" value="RAPFactory"/>
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43 <Parameter name="P" type="string" value="
myProlongatorFact"/>

44 <Parameter name="R" type="string" value="
myRestrictorFact"/>

45 <ParameterList name="TransferFactories">
46 <Parameter name="Visualization" type="string" value="

myAggExportFact"/>
47 </ParameterList>
48 </ParameterList>
49

50 <!-- ======================= SMOOTHERS ======================= -->
51 <ParameterList name="SymGaussSeidel">
52 <Parameter name="factory" type="string" value="

TrilinosSmoother"/>
53 <Parameter name="type" type="string" value="RELAXATION"/>

54 <ParameterList name="ParameterList">
55 <Parameter name="relaxation: type" type="string" value="Symmetric

Gauss-Seidel"/>
56 <Parameter name="relaxation: sweeps" type="int" value="1"/>
57 <Parameter name="relaxation: damping factor" type="double" value="1.0"/>
58 </ParameterList>
59 </ParameterList>
60

61 </ParameterList>
62

63 <!-- Definition of the multigrid preconditioner -->
64 <ParameterList name="Hierarchy">
65

66 <Parameter name="max levels" type="int" value="10"/>
67 <Parameter name="coarse: max size" type="int" value="10"/>
68 <Parameter name="verbosity" type="string" value="High"/>
69

70 <ParameterList name="All">
71 <Parameter name="Smoother" type="string" value="SymGaussSeidel"/>
72 <Parameter name="Graph" type="string" value="myCoalesceDropFact"/>
73 <Parameter name="Aggregates" type="string" value="UncoupledAggregationFact"/>
74 <Parameter name="Nullspace" type="string" value="myTentativePFact"/>
75 <Parameter name="P" type="string" value="myProlongatorFact"/>
76 <Parameter name="R" type="string" value="myRestrictorFact"/>
77 <Parameter name="A" type="string" value="myRAPFact"/>
78 <Parameter name="CoarseSolver" type="string" value="DirectSolver"/>
79 </ParameterList>
80 </ParameterList>
81 </ParameterList>

The listing shows how the Graph and the variable DofsPerNode generated by the coalescing
factory myCoalesceDropFact are explicitly used as input for the aggregation routine. This is
an example for a direct link of variables from output to the corresponding input. In addition,
the myCoalesceDropFact is registered to produce the variable Graph in the Hierarchy section
of the XML file. One should also register myCoalesceDropFact to produce the DofsPerNode
information. In our case it is not really necessary, since all factories which rely on information
from DofsPerNode get the information directly in the XML file (see also myAggExportFact in
above listing). So, one has in general two possibilities to declare inter-factory dependencies.
One can either explicitly describe the input for each factory (as demonstrated for the Graph
in UncoupledAggregationFact) or use the default factories (provided either by MueLu or
explicitly set by the user in the Hierarchy section). MueLu uses the following ordering: first, the
explicit input dependencies within the factories are used by MueLu. If a user does not define
input variables (e.g., there is no input for Aggregates in myTentativePFact), MueLu checks



58 Chapter 9. Aggregation

whether there is a default factory for the data variable set in the Hierarchy section (in above
listing it will find UncoupledAggregationFact to be responsible to provide the Aggregates).
Otherwise MueLu will use some internal default factory.

For demonstration purposes we also introduced a RAPFactory which makes use of the user-
defined transfer factories myProlongatorFact as well as myRestrictorFact. The full XML file
can be found in xml/s4a.xml.

9.2 Visualization of aggregates
For debugging purposes it can be very useful to visualize the aggregates. In MueLu there is a
helper factory named AggregationExportFactory which can be used to export the aggregates
for visualization purposes.

The AggregationExportFactory acts as a small helper factory within the RAPFactory which
writes out some aggregation information to files on the hard disk (see figure 9.1). In a post-
processing step one can use these files together with some mesh information to generate pictures
of the aggregates on each level. For post-processing we use the MueLu_Agg2VTK.py python script
which is stored in the src folder of this tutorial. It works both for 2D and 3D problems. You
have to provide the output files from the AggregationExportFactory as well as a list of node
coordinates, that are needed to produce the output in the vtk format which can be opened in
paraview.

* The visualization script has successfully been tested with VTK 5.x. Note that it is not
compatible to VTK 6.x.

Exercise 9.1 Run the Laplace 2D example on a 50×50 mesh using the XML file xml/s4a.xml.
Visualize the aggregates. �

Exercise 9.2 In the xml/s4a.xml file an uncoupled aggregation factory has been explicitly
defined using with some user-chosen aggregation parameters. Make a copy of xml/s4a.xml
and use the default (uncoupled) aggregation routine that is provided by MueLu if no user-
specified aggregation algorithm with parameters is prescribed. Which line in the XML file do
you have to remove to obtain this behavior? Compare the results (screen output of aggregates,
multigrid hierarchy). Try to visualize the aggregates. �

Before we close this tutorial there are some general remarks that might help in setting up
valid XML files.

* In general it is a good idea to use the Hierarchy section to register the factories to generate
the variables. It is very hard to declare all dependencies in the factory sections itself. In
the worst case you declare, e.g., a UncoupledAggregationFactory and use it as input for the
TentativePFactory but forget to declare it also explicitly as input for the aggregation export
factory AggregationExportFactory. If you UncoupledAggregationFactory is not declared as
default for Aggregates in the AggregationExportFactory, the AggregationExportFactory
will use default aggregates provided by MueLu which are not identical to the aggregates used
for building the transfer operators! Missing or wrong dependencies in the factory list are very
hard to debug. Therefore one should always start with the Hierarchy section and only locally
overwrite the dependencies where necessary.
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(a) Aggregates with settings from xml/s4a.xml

(b) Aggregates with settings from xml/s4b.xml (default parameters)

Figure 9.2: Different aggregation parameters and the corresponding aggregates





10. Useful commands and debugging

10.1 Export level information
Of course, it is possible to export the multigrid hierarchy in matrix market format similar to
§4.2 when using the advanced XML file format instead of the simple XML format.

To export the multigrid hierarchy one can use, e.g., the following parameters

1 <ParameterList name="MueLu">
2

3 <!-- Factory collection -->
4 <ParameterList name="Factories">
5 </ParameterList>
6

7 <!-- Definition of the multigrid preconditioner -->
8 <ParameterList name="Hierarchy">
9

10 <Parameter name="max levels" type="int" value="3"/>
11 <Parameter name="coarse: max size" type="int" value="10"/>
12 <Parameter name="verbosity" type="string" value="Low"/>
13

14 <ParameterList name="All">
15 </ParameterList>
16

17 <ParameterList name="DataToWrite">
18 <Parameter name="Matrices" type="string" value="{0,1,2}"/>
19 <Parameter name="Prolongators" type="string" value="{1,2}"/>
20 <Parameter name="Restrictors" type="string" value="{1,2}"/>
21 </ParameterList>
22 </ParameterList>
23 </ParameterList>

10.2 Dependency trees
For debugging it can be extremely helpful to automatically generate the dependency tree of
the factories for a given XML file. However, it shall be noticed that even with a graphical
dependency tree it might be hard to find the missing links and dependencies without a sufficient
understanding of the overall framework.

To write out the dependencies you just have to put in the dependencyOutputLevel parameter.
The value gives you the fine level index that you are interested in (e.g., 1 means: print dependencies



62 Chapter 10. Useful commands and debugging

between level 1 and level 2).

1 <ParameterList name="MueLu">
2

3 <!-- Factory collection -->
4 <ParameterList name="Factories">
5 </ParameterList>
6

7 <!-- Definition of the multigrid preconditioner -->
8 <ParameterList name="Hierarchy">
9

10 <Parameter name="max levels" type="int" value="3"/>
11 <Parameter name="coarse: max size" type="int" value="10"/>
12 <Parameter name="verbosity" type="string" value="Low"/>
13

14 <ParameterList name="All">
15 </ParameterList>
16

17 <Parameter name="dependencyOutputLevel" type="int" value="1"/>
18

19 </ParameterList>
20 </ParameterList>

After running the example you should find a file named dep_graph.dot in the current folder
which you can transform into a graph using the dot utility from the graphviz package. Run, e.g.
the following commands in your terminal to obtain the following graph:

sed -i ’s/label=Graph\]/label=\"Graph\"\]/’ dep_graph.dot
sed -i ’s/\\"/"/g’ dep_graph.dot
sed -i ’s/"</</’ dep_graph.dot
sed -i ’s/>"/>/’ dep_graph.dot
dot -Tpng dep_graph.dot -o dep_graph.dot.png
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Note that the red arrows correspond to the fine level (level 1) and the blue arrows correspond
to data on the coarse level (level 2). Compare the factory layout in Figure 9.1 with above
dependency graph. Try to read it from bottom to top.

* In case that the file dep_graph.dot is not generated you have to check the prerequisites.
To be able to auto-generate the dependency graphs you have to compile MueLu with Boost
enabled. Furthermore you have to set the MueLu_ENABLE_Boost_for_real:BOOL = ON defines
flag in your configuration script. If these requirements are not fulfilled you should find the error
message Dependency graph output requires boost and MueLu_ENABLE_Boost_for_real in the
screen output of MueLu.

As one can see from the dependency output there are also some internal factories which have
not been visualized in the Figures 7.1. A good example is the NullspaceFactory which seems
to build a dependency cycle with the TentativePFactory. In fact, the NullspaceFactory is
a helper factory which allows to use the user-provided near null space vectors as input on the
finest level. On the coarser levels it just loops through the generated coarse set of near null space
vectors from the TentativePFactory. This is a technical detail which sometimes can cause some
problems when the corresponding dependency is not defined properly in the XML file.

10.3 Graphical assistant for XML file generation

The hands-on.py driver script contains a graphical assistant to generate new XML parameter
files in the advanced MueLu file format.

Just run the hands-on.py script and choose a problem type from the list. Then choose
option 2 to set the xml file. If you enter a filename that does not exist then the assistant is
started to generate that new XML file.
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Just go through the menu and make your choices for level smoothers, transfer operators and
so on. Do not forget to call option 6 to save the XML file under the given name, that you have
entered before. Then you can use option 7 to go back to the main menu for the example problem
and try your new preconditioner with your parameter choices.

* Of course, we could have introduced this feature with the earlier tutorials, but the idea was
to familiarize the user with the XML files.



11. Challenge: elasticity example

11.1 Practical example
For the second challenge, we consider an 2D elasticity example with 7020 degrees of freedom. No
further information is provided (geometry, discretization technique, . . . ).

11.2 User-interface
Run the hands-on.sh script and choose the option 5 for the elasticity. The script automatically
generates a XML file with reference multigrid parameters which are far from being optimal. The
resulting problem matrix is symmetric. Therefore, we can use a CG method as outer linear
solver.

Exercise 11.1 Open the stru2d_parameters.xml file by pressing option 3. Try to find
optimized multigrid settings using your knowledge from the previous tutorials. We have
2 (displacement) degrees of freedom per node and 3 vectors describing the near null space
components (rigid body modes). All this information is automatically set correctly by the
hands-on.py script. Run the example. Check the screen output (using option 1) and verify
blockdim=2 on level 1 and blockdim=3 on level 2. �

In the screen output of the CoalesceDropFactory the blockdim denotes the number of
degrees of freedom per node (or super node on the coarser levels). Since the number of near null
space vectors differs from the number of PDE equations, the number of degrees of freedom per
node changes on the different multigrid levels.

Exercise 11.2 Open the XML parameter file (choose option 3) and try to find optimized
settings. Use the advanced XML file format. Save the file, rerun the example (option 0) and
compare the output with the reference results. �

* Use §5.3 for a general step-by-step procedure to optimize the multigrid parameters.

Exercise 11.3 How do the reference settings and your XML parameter settings perform when
increasing the number of processors? �

Exercise 11.4 Compare the results of the reference method and your preconditioner parameters
when changing to a GMRES solver (instead of CG). What is changing? What about the
solver timings? �





Expert tutorials





12. Using MUELU in user applications

This tutorial demonstrates how to use MueLu from within user applications in C++. In [2, Sec-
tion 2.6] it is explained how to use MueLu through the MueLu::CreateE/TpetraPreconditioner
interface. This interface is designed for beginners which want to try MueLu through standard
Trilinos interfaces. Note that there is also support for Stratimikos. Please refer to the
examples in the MueLu folder for more details.

This tutorial aims at more advanced methods to use MueLu, creating an explicit instance
of some MueLu classes like MueLu::Hierarchy and MueLu::HierarchyManager. In the next
sections we give some code snippets. Most of them are borrowed form the laplace2d.cpp file in
the tutorial.

12.1 Preparations
First of all, we have to define a communicator object.

1

2 Teuchos::GlobalMPISession mpiSession(&argc, &argv, NULL);
3 RCP< const Teuchos::Comm<int> > comm = Teuchos::DefaultComm<int>::getComm();
4 int MyPID = comm->getRank();
5 int NumProc = comm->getSize();
6

7 const Teuchos::RCP<Epetra_Comm> epComm = Teuchos::rcp_const_cast<Epetra_Comm>(Xpetra::
toEpetra(comm));

For the multigrid method we need a linear operator A. For demonstration purposes, here we
just generate a 2D Laplacian operator using the Galeri package (see 1.1). In this example we
use Epetra for the underlying linear algebra framework, but it shall be mentioned that it works
for Tpetra in a similar way (refer to the code examples in the MueLu examples folder).

1

2 // create map
3 epMap = Teuchos::rcp(Galeri::CreateMap("Cartesian2D", *epComm, GaleriList));
4

5 // create coordinates
6 epCoord = Teuchos::rcp(Galeri::CreateCartesianCoordinates("2D", epMap.get(),

GaleriList));
7

8 // create matrix
9 epA = Teuchos::rcp(Galeri::CreateCrsMatrix("Laplace2D", epMap.get(), GaleriList));

10
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11 double hx = 1./(nx-1); double hy = 1./(ny-1);
12 epA->Scale(1./(hx*hy));

MueLu is based on Xpetra which provides a common interface both for Epetra and
Tpetra. Therefore we have to encapsulate our Epetra objects into Xpetra wrapper objects.
This is done using the following code.

1

2 // Epetra -> Xpetra
3 Teuchos::RCP<CrsMatrix> exA = Teuchos::rcp(new Xpetra::EpetraCrsMatrix(epA));
4 Teuchos::RCP<CrsMatrixWrap> exAWrap = Teuchos::rcp(new CrsMatrixWrap(exA));
5

6 RCP<Matrix> A = Teuchos::rcp_dynamic_cast<Matrix>(exAWrap);
7 A->SetFixedBlockSize(1);

Note that the MueLu setup routines require a Xpetra::Matrix object. The wrapper class
Xpetra::CrsMatrixWrap is just a wrapper derived from Xpetra::Matrix which manages a
Xpetra::CrsMatrix object which is the common base class for both Epetra and Tpetra CRS
matrix classes. The details are not really important as long as one understands that one needs a
Xpetra::Matrix object for MueLu in the end. With the SetFixedBlockSize routine we state
that there is only one degree of freedom per node (pure Laplace problem). For aggregation-based
algebraic multigrid methods one has to provide a valid set of near null space vectors to produce
transfer operators. In case of a Laplace problem we just use a constant vector.

1

2 // build null space vector
3 RCP<const Map> map = A->getRowMap();
4 RCP<MultiVector> nullspace = MultiVectorFactory::Build(map, 1);
5 nullspace->putScalar(one);

12.2 Setup phase
With a fine level operator A available as Xpetra::Matrix object and a set of near null space
vectors (available as Xpetra::MultiVector) all minimum requirements are fulfilled for generating
an algebraic multigrid hierarchy. There are two different ways to setup a multigrid hierarchy
in MueLu. One can either use a parameter list driven setup process which accepts either
Teuchos::ParameterList objects or XML files in two different XML file formats. Alternatively,
one can use the MueLu C++ API to define the multigrid setup at compile time. In the next
sections we show both variants.

12.2.1 XML Interface
The most comfortable way to declare the multigrid parameters for MueLu is using the XML
interface. In fact, MueLu provides two different XML interfaces. There is a simplified XML
interface for multigrid users and a more advanced XML interface for expert which allows to make
use of all features of MueLu as a multigrid framework. Both XML file formats are introduced in
the previous sections of this hands on tutorial. However, for the C++ code it makes no difference
which type of XML interface is used.

Assuming that we have a Teuchos::ParameterList object with valid MueLu parameters
we can create a MueLu::HierarchyManager object

1 // Create parameter list interpreter
2 RCP<HierarchyManager> mueLuFactory = rcp(new ParameterListInterpreter(mueluList));

For an example how to fill the parameter list the reader may refer to [2, Section 2.3]. Note
that there are routines to fill the parameter lists with the information from XML files. You can
also directly provide a file name of a XML file to the Muelu::ParameterListInterpreter. For
details you may refer to the doxygen documentation or the example in laplace2d.cpp.

Next a new MueLu::Hierarchy object is generated
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1 // Define MueLu hierarchy
2 RCP<Hierarchy> H;

The CreateHierarchy creates a new empty multigrid hierarchy with a finest level only. The
user has to feed in the linear operator A and the near null space vector. If further information
is available, such as the node coordinates, they can be also stored in the finest level. The
coordinates are needed, e.g., for rebalancing the coarse levels. Finally, the SetupHierarchy call
initiates the coarsening process and the multigrid hierarchy is built according to the parameters
from the mueluList parameters.

1 // Create MueLu hierarchy
2 H = mueLuFactory->CreateHierarchy();
3 H->GetLevel(0)->Set("A", A);
4 H->GetLevel(0)->Set("Nullspace", nullspace);
5 if (!coordinates.is_null())
6 H->GetLevel(0)->Set("Coordinates", coordinates);
7 mueLuFactory->SetupHierarchy(*H);

As XML parameter file any of the files shown in the previous tutorials can be used.

* As one can see from the last code snippet, the Hierarchy allows access to all important parts
of the multigrid method before setup. So, if you have to feed in some non-standard information,
this is the way how it works. Using the CreateE/TpetraPreconditioner interface may be easier
but does not allow to access the finest level before setup.

Once the SetupHierarchy call is completed, the multigrid hierarchy is ready to use. The
reader can skip the next section about the C++ interface and proceed with §12.3.3 for an example
how to use the multigrid method as preconditioner within a Krylov subspace method from the
Belos package.

12.2.2 C++ Interface
As an alternative to the XML interfaces, the user can also define the multigrid hierarchy using
the C++ API directly. In contrary to the XML interface which allows to build the layout of the
multigrid preconditioner at runtime, the preconditioner is fully defined at compile time when
using the C++ interface.

First, a MueLu::Hierarchy object has to be defined, which manages the multigrid hierarchy
including all multigrid levels. It provides routines for the multigrid setup and the multigrid cycle
algorithms (such as V-cycle and W-cycle).

1 // create new hierarchy
2 RCP<MueLu::Hierarchy<SC, LO, GO, NO> > H;

There are some member functions which can be used to describe the basic multigrid hierarchy.
The SetMaxCoarseSize member function is used to set the maximum size of the coarse level
problem before the coarsening process can be stopped.

1 // instantiate new Hierarchy object
2 H = rcp(new Hierarchy());
3 H->setDefaultVerbLevel(Teuchos::VERB_HIGH);
4 H->SetMaxCoarseSize((GO) optMaxCoarseSize);

Next, one defines an empty MueLu::Level object for the finest level. The MueLu::Level
objects represent a data container storing the internal variables on each multigrid level. The user
has to provide and fill the level container for the finest level only. The MueLu::Hierarchy object
then automatically generates the coarse levels using the multigrid parameters. The absolute
minimum requirements for the finest level that the user has to provide is the fine level operator
A which represents the fine level matrix. MueLu is based on Xpetra. So, the matrix A has to
be of type Xpetra::Matrix. In addition, the user should also provide a valid set of near null
space vectors. For a Laplace problem we can just use the constant nullspace vector that has
previously been defined. Some routines need additional information. For example, the user has
to provide the node coordinates for repartitioning.
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1 // create a fine level object
2 RCP<Level> Finest = H->GetLevel();
3 Finest->setDefaultVerbLevel(Teuchos::VERB_HIGH);
4 Finest->Set("A", A);
5 Finest->Set("Nullspace", nullspace);
6 Finest->Set("Coordinates", coordinates); //FIXME: XCoordinates, YCoordinates, ..

* When including the MueLu_UseShortNames.hpp header file the template parameters usually
can be dropped for compiling. The most important template parameters are SC for the scalar
type, LO for the local ordinal type (usually int) and GO for the global ordinal type. For a detailed
description of the template parameters the reader may refer to the Tpetra documentation.

A MueLu::FactoryManager object is used for the internal management of data dependencies
and generating algorithms of the multigrid setup. Even though not absolutely necessary, we show
the usage of the MueLu::FactoryManager object as it allows for user-specific enhancements of
the multigrid code.

1 // define a factory manager
2 FactoryManager M;

The user can define its own factories for performing different tasks in the setup process. The
following code shows how to define a smoothed aggregation transfer operator and a restriction
operator. The MueLu::RAPFactory is used for the (standard) Galerkin product to generate the
coarse level matrix A.

1 // declare some factories (potentially overwrite default factories)
2 RCP<SaPFactory> PFact = rcp(new SaPFactory());
3 PFact->SetDampingFactor(optSaDamping);
4

5 RCP<Factory> RFact = rcp(new TransPFactory());
6

7 RCP<RAPFactory> AFact = rcp(new RAPFactory());
8 AFact->setVerbLevel(Teuchos::VERB_HIGH);

The user-defined factories have to be registered in the FactoryManager using the lines

1 // configure factory manager
2 M.SetFactory("P", PFact);
3 M.SetFactory("R", RFact);
4 M.SetFactory("A", AFact);

* If you forget to register the new factories, the FactoryManager will use some internal default
factories for being responsible to create the corresponding variables. Then your user-specified
factories are just ignored during the multigrid setup!

Note, that the FactoryManager is also responsible for resolving all dependencies between different
factories. That is, after the user-defined factories have been registered, all factories that request
variable P are provided with the prolongation operator P that has been generated by the
registered factory PFact. If there is some data requested for which no factory has been registered
by the user, the FactoryManager manages an internal list for reasonable default choices and
default factories.

Next, the user has to declare a level smoother. The following code can be used to define a
symmetric Gauss-Seidel smoother. Other methods can be set up in a similar way.

1 // define smoother object
2 std::string ifpackType;
3 Teuchos::ParameterList ifpackList;
4 ifpackList.set("relaxation: sweeps", (LO) optSweeps);
5 ifpackList.set("relaxation: damping factor", (SC) 1.0);
6 if (optSmooType == "sgs") {
7 ifpackType = "RELAXATION";
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8 ifpackList.set("relaxation: type", "Symmetric Gauss-Seidel");
9 }

Before the level smoother can be used, a MueLu::SmootherFactory has to be defined for
the smoother factory. The SmootherFactory is used in the multigrid setup to generate level
smoothers for the corresponding levels using the prototyping design pattern. Note, that the
SmootherFactory has also to be registered in the FactoryManager object. If the user forgets
this, the multigrid setup will use some kind of default smoother, i.e., the user-chosen smoother
options are just ignored.

1 // create smoother factory
2 RCP<SmootherPrototype> smootherPrototype = rcp(new TrilinosSmoother(ifpackType,

ifpackList));
3 M.SetFactory("Smoother", rcp(new SmootherFactory(smootherPrototype)));

Once the FactoryManager is set up, it can be used with the Hierarchy::Setup routine to
initiate the coarsening process and set up the multigrid hierarchy.

1 // setup multigrid hierarchy
2 int startLevel = 0;
3 H->Setup(M, startLevel, optMaxLevels);

12.3 Iteration phase
Once the setup phase is completed, the MueLu multigrid hierarchy is ready for being used.

There are several ways how to use the multigrid method. One can apply the multigrid
method as standalone solver for linear systems. Multigrid methods are also known to be efficient
preconditioners within iterative (Krylov) solvers such as CG or GMRES methods.

In the next subsections it is demonstrated how to use MueLu as standalone solver and as
preconditioner for iterative solvers from the Belos and AztecOO package in Trilinos.

For solving a linear system Ax = b we need a right hand side vector b. When using iterative
solvers we also need an initial guess for the solution vector.

1

2 // set rhs and solution vector
3 RCP<Epetra_Vector> B = Teuchos::rcp(new Epetra_Vector(*epMap));
4 RCP<Epetra_Vector> X = Teuchos::rcp(new Epetra_Vector(*epMap));
5 B->PutScalar(1.0);
6 X->PutScalar(0.0);
7

8 // Epetra -> Xpetra
9 RCP<Vector> xB = Teuchos::rcp(new Xpetra::EpetraVector(B));

10 RCP<Vector> xX = Teuchos::rcp(new Xpetra::EpetraVector(X));
11

12 xX->setSeed(100);
13 xX->randomize();

In this example we just create Epetra vectors and wrap them into Xpetra objects. The right
hand side vector is initialized with one and the solution vector is filled with random values.

12.3.1 MUELU as multigrid solver
To use MueLu as standalone solver one can use the following code

1

2 // use multigrid hierarchy as solver
3 RCP<Vector> mgridLsgVec = VectorFactory::Build(map);
4 mgridLsgVec->putScalar(0.0);
5 {
6 fancyout << "========================================================\nUse

multigrid hierarchy as solver." << std::endl;
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7 tm = rcp (new TimeMonitor(*TimeMonitor::getNewTimer("ScalingTest: 5 - Multigrid
Solve")));

8 mgridLsgVec->update(1.0,*xX,1.0);
9 H->IsPreconditioner(false);

10 H->Iterate(*xB, *mgridLsgVec, mgridSweeps);
11 comm->barrier();
12 tm = Teuchos::null;
13 }

In this code snippet a solution vector is created using the Xpetra::VectorFactory and ini-
tialized with the content from the solution vector xX containing the initial guess. Then, the
MueLu::Hierarchy object is set to the non-preconditioner mode and the Iterate routine is called
to perform mgridSweeps sweeps with the chosen multigrid cycle. If successful, the mgridLsgVec
vector contains the solution.

12.3.2 MUELU as preconditioner for AZTECOO
Commonly, multigrid methods are used as preconditioners for iterative linear solvers. Here, we
show how to use the MueLu::Hierarchy as preconditioner within an AztecOO solver (using
Epetra). After an Epetra solution vector has been created by

1 RCP<Epetra_Vector> precLsgVec = rcp(new Epetra_Vector(X->Map()));

the following code can be used to apply the MueLu hierarchy as preconditioner within the
AztecOO CG solver

1 precLsgVec->PutScalar(0.0);
2 precLsgVec->Update(1.0,*X,1.0);
3 Epetra_LinearProblem epetraProblem(epA.get(), precLsgVec.get(), B.get());
4

5 AztecOO aztecSolver(epetraProblem);
6 aztecSolver.SetAztecOption(AZ_solver, AZ_cg);
7

8 MueLu::EpetraOperator aztecPrec(H);
9 aztecSolver.SetPrecOperator(&aztecPrec);

10

11 int maxIts = 50;
12

13 aztecSolver.Iterate(maxIts, tol);

Basically, the MueLu hierarchy is put into an MueLu::EpetraOperator object, which imple-
ments the Epetra interface for preconditioners. With the SetPrecOperator routine from the
AztecOO solver the MueLu::EpetraOperator object then is defined as preconditioner.

12.3.3 MUELU as preconditioner for BELOS

Belos is the successor package of AztecOO for linear solvers in Trilinos and works both for
Epetra and Tpetra. Here we demonstrate how to use MueLu as preconditioner for Belos
solvers using Xpetra. First, we have to declare objects for the solution vector and the right
hand side vector in Xpetra. The following code just uses a random vector for the initial guess
and solution variable.

1 // Define X, B
2 RCP<MultiVector> X = MultiVectorFactory::Build(map, 1);
3 RCP<MultiVector> B = MultiVectorFactory::Build(map, 1);
4

5 X->setSeed(846930886);
6 X->randomize();
7 A->apply(*X, *B, Teuchos::NO_TRANS, (SC)1.0, (SC)0.0);
8 B->norm2(norms);
9 B->scale(1.0/norms[0]);
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In the following we demonstrate how to use the MueLu hierarchy as preconditioner within
a Belos solver. There are special wrapper objects for wrapping the Xpetra matrix and the
MueLu hierarchy to Belos compatible objects. These can be used to define a linear problem
for use with Belos.

1 // Operator and Multivector type that will be used with Belos
2 typedef MultiVector MV;
3 typedef Belos::OperatorT<MV> OP;
4 H->IsPreconditioner(true);
5

6 // Define Operator and Preconditioner
7 Teuchos::RCP<OP> belosOp = Teuchos::rcp(new Belos::XpetraOp<SC, LO, GO, NO>(A)); //

Turns a Xpetra::Operator object into a Belos operator
8 Teuchos::RCP<OP> belosPrec = Teuchos::rcp(new Belos::MueLuOp<SC, LO, GO, NO>(H)); //

Turns a MueLu::Hierarchy object into a Belos operator
9

10 // Construct a Belos LinearProblem object
11 RCP< Belos::LinearProblem<SC, MV, OP> > belosProblem = rcp(new Belos::LinearProblem<

SC, MV, OP>(belosOp, X, B));
12 belosProblem->setLeftPrec(belosPrec);
13

14 bool set = belosProblem->setProblem();
15 if (set == false) {
16 if (comm->getRank() == 0)
17 std::cout << std::endl << "ERROR: Belos::LinearProblem failed to set up

correctly!" << std::endl;
18 return EXIT_FAILURE;
19 }

Then, one can set up the Belos solver. For a Belos GMRES solver one uses

1 // Belos parameter list
2 int maxIts = 100;
3 Teuchos::ParameterList belosList;
4 belosList.set("Maximum Iterations", maxIts); // Maximum number of iterations allowed
5 belosList.set("Convergence Tolerance", optTol); // Relative convergence tolerance

requested
6 //belosList.set("Verbosity", Belos::Errors + Belos::Warnings + Belos::TimingDetails

+ Belos::StatusTestDetails);
7 belosList.set("Verbosity", Belos::Errors + Belos::Warnings + Belos::

StatusTestDetails);
8 belosList.set("Output Frequency", 1);
9 belosList.set("Output Style", Belos::Brief);

10

11 // Create an iterative solver manager
12 RCP< Belos::SolverManager<SC, MV, OP> > solver = rcp(new Belos::BlockCGSolMgr<SC, MV

, OP>(belosProblem, rcp(&belosList, false)));

Finally, we can solve the linear system using Belos with the MueLu multigrid preconditioner
(left-preconditioning) by calling

1 // solve linear system
2 ret = solver->solve();

and perform some convergence checks

1 // Check convergence
2 if (ret != Belos::Converged) {
3 if (comm->getRank() == 0) std::cout << std::endl << "ERROR: Belos did not converge

! " << std::endl;
4 } else {
5 if (comm->getRank() == 0) std::cout << std::endl << "SUCCESS: Belos converged!" <<

std::endl;
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6 }

12.4 Full example
The reader may refer to laplace2d.cpp for a working example to study the source code. This
demonstration program has some more features that are not discussed in this tutorial.

Exercise 12.1 Compile the example in laplace2d.cpp and then run the program in parallel
using two processors

mpirun -np 2 ./MueLu_tutorial_laplace2d.exe --help

Study the screen output and try to run the example with an XML file as input for the
multigrid setup. �

Exercise 12.2 Create large scale examples using the nx and ny parameters for a finer mesh.
Choose reasonable numbers for nx and ny for your machine and make use of your knowledge
about MueLu for generating efficient preconditioners. �
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13.1 Backwards compatibility
ML [7] is the predecessor multigrid package of MueLu in Trilinos and widely used in the
community for smoothed aggregation multigrid methods. ML is implemented in C and known
for its good performance properties. However, the disadvantage is that ML is harder to adapt
to new applications and non-standard problems. Furthermore, ML uses its own internal data
structure and is somewhat limited to the use with Epetra objects only. In contrast, MueLu
provides a fully flexible multigrid framework which is designed to be adapted to any kind of new
application with non-standard requirements. Furthermore, it is based on Xpetra and therefore
can be used both with Epetra or Tpetra. Nevertheless, it is an important point to provide
some kind of backwards compatibility to allow ML users to easily migrate to MueLu (or make
experiments with MueLu without having to write to much new code).

In this tutorial we present the MueLu::MLParameterListInterpreter which provides support
for the most important ML parameters to be used with MueLu.

13.2 C++ part
13.2.1 Preparations

In order to use MueLu (instead or aside of ML) you first have to add it to your application.
Please refer to the MueLu user guide for information about compilation and linking (see [2]).
Basically, if your application is already working with ML you should only need to compile and
install MueLu and make sure that the MueLu libraries are found by the linker.

13.2.2 C++ interface
In the following we assume that the linear operator A is available as RCP<Xpetra::Matrix> A.

Then we create a parameter list and fill it with ML parameters. Please refer to the ML guide
[7] for a complete list of available parameters.

1 params = rcp(new Teuchos::ParameterList());
2

3 params->set("ML output", 10);
4 params->set("max levels", 2);
5 params->set("smoother: type", "symmetric Gauss-Seidel");
6

7 if (xpetraParameters.GetLib() == Xpetra::UseTpetra)
8 params->set("coarse: type","Amesos-Superlu");
9 else
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10 params->set("coarse: type","Amesos-KLU");

* Be aware that the MLParameterListInterpreter does not support all ML parameters but
only the most important ones (e.g., smoothers, transfer operators, rebalancing, ...). There is,
e.g., no support for the Maxwell specific enhancements in ML.

Instead of defining the ML parameters by hand in the ParameterList you can also read in
XML files with ML parameters using

1 params = Teuchos::getParametersFromXmlFile(xmlFileName);

Next, you create a MLParameterListInterpreter object using the parameters and create a
new MueLu::Hierarchy from it.

1 MLParameterListInterpreter mueLuFactory(*params);
2 RCP<Hierarchy> H = mueLuFactory.CreateHierarchy();

Of course, we have to provide all necessary information for the multigrid setup routine. This
does not only include the fine level operator but also the set of near null space vectors. Assuming
that numPDEs stores the number of equations (and near null space vectors) the following code
allows to produce piecewise constant standard near null space vectors (which should be valid for
many PDE discretizations).

1 RCP<MultiVector> nullspace = MultiVectorFactory::Build(A->getDomainMap(), numPDEs);
2

3 for (int i=0; i<numPDEs; ++i) {
4 Teuchos::ArrayRCP<Scalar> nsValues = nullspace->getDataNonConst(i);
5 int numBlocks = nsValues.size() / numPDEs;
6 for (int j=0; j< numBlocks; ++j) {
7 nsValues[j*numPDEs + i] = 1.0;
8 }
9 }

Then we just feed in the information to the finest level

1 H->GetLevel(0)->Set("Nullspace", nullspace);
2 H->GetLevel(0)->Set("A", A);

Finally we call the Setup routine which actually builds the multigrid hierarchy.

1 mueLuFactory.SetupHierarchy(*H);

Once we have the multigrid hierarchy set up we can use it the same way as described in §12.3.

Exercise 13.1 Study the source code of ../src/MLParameterList.cpp and compile it. Run
the executable MueLu_tutorial_MLParameterList.exe with the --help command line pa-
rameter to get an overview of all available command line parameters. Run the example
using

./MueLu_tutorial_MLParameterList.exe --ml=1 --muelu=0
--xml=xml/ml_ParameterList.xml --linAlgebra=Epetra

and study the ML output. Compare the output and results when switching to MueLu using
the same input file

./MueLu_tutorial_MLParameterList.exe --ml=0 --muelu=1
--xml=xml/ml_ParameterList.xml --linAlgebra=Epetra

�
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Exercise 13.2 Play around with the parameters from MueLu_tutorial_MLParameterList.exe.
Change, e.g., the problem type to a 2D Laplace problem (--matrixType=Laplace2D) and
adapt the --nx and --ny parameters accordingly. Try to run both ML and MueLu and
compare the results. Do you find significant differences? �
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A. Virtual box image

This chapter discusses the basics of the virtual box image that comes with this tutorial to allow
the user to follow above explanations and do its own experiments with MueLu and Trilinos.
A virtual machine has the advantage that it is rather easy to set up for a user. Even though
compiling and installing got easier the last years by using a cmake based build system it is still a
nightmare for not so experienced users. The virtual machine runs both on Linux and Windows
as host and brings all the necessary tools for a quick start to MueLu.

A.1 Preparations
To use the virtual machine you basically have to perform the following steps.

1. Install VirtualBox on your host machine. You can download it from www.virtualbox.org.
2. Download the MueLu_Tutorial.ova virtual machine. The image file has 4 GB.
3. Run VirtualBox and import the MueLu_Tutorial.ova machine.
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Then, check and adapt the settings of the virtual machine.

In general, one processor should be enough. But if you want to make some more reasonable
tests with parallel multigrid you should increase the number of processors accordingly.
Click import, to import the virtual machine.

4. With a click on the start button the virtual machine is booting.

A.2 First steps
A.2.1 Login and setup

Once the virtual machine is started you first have to login.

The login data is:
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Username: muelu
Password: sandia

* You only need to enter the password in above screen.

After the login you should see the following desktop.

First, you should adapt the language settings and the keyboard layout. You can switch the
keyboard layout by clicking on the logo in the lower right corner. A right click on the logo allows
you to change more details

Then you are ready to go with the tutorial.

A.2.2 MUELU tutorial
Open the tutorial with evince as pdf viewer. To open evince you can either use the shortcut
in the lower left corner of your desktop or press Alt + F2 to open the Run dialog and enter
evince. Load the muelu_tutorial.pdf file in the tutorial folder of your home directory.
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To open a terminal you have several option. Either use the shortcut button in the lower left
corner. Alternatively you can open the Run dialog ( Alt + F2 ) and enter lxterminal. As a
third alternative you can just press Ctrl + Alt + T . In the terminal, change to the tutorial
folder by entering cd tutorial. Therein you can find the hands-on.py script which is used
throughout the whole MueLu tutorial.

* Use the Win + ← and Win + → keys to arrange the windows in a split view as shown
above. There are other useful keyboard shortcuts such as Win + R to open the Run dialog or
Win + E to open the file manager.

When plotting the results with gnuplot from within the hands-on.py script it might be useful
to make the plot windows to stay on top.

The virtual machine has all software installed that you need to follow the tutorial (including
paraview)
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A.3 Software
The virtual machine is based on a minimal installation of Lubuntu 14.04. The image file has 4
GB with about 250 MB free for the user.

The following software is pre-installed:
Web-browser: midori
PDF-viewer: evince
Terminal: LXTerminal
Visualization: paraview, gnuplot
File manager: PCManFM

The following system libraries are installed:
Trilinos: Trilinos (developer branch: Oct 1, 2014)
Direct solver: SuperLU 4.3
VTK: VTK 5.8
MPI: OpenMPI 1.6.5
Python: Python 2.7.6
Compiler: gcc 4.8.2





B. Error messages

B.1 Syntax errors
B.1.1 Parser errors

XML parse error at line 27: file ended before closing element ’ParameterList’ from
line 1

Forgot to close the </ParameterList> section that is opened in line 1 of the xml file.

XML parse error at line 15: start element not well-formed: invalid character

Check line 15 for an invalid xml format. The reason can be, e.g., a missing closing character />
for a parameter.

B.1.2 Parameter list errors

All child nodes of a ParameterList must have a name attribute!

You probably forgot to add a name attribute in one or more elements of your xml file, that is
you used, e.g.,

<Parameter type="string" value="RELAXATION"/>

instead of

<Parameter name="smoother: type" type="string" value="RELAXATION"/>

Error, the parameter {name="smoother: type",type="int",value="0"}
in the parameter (sub)list "ANONYMOUS"
exists in the list of valid parameters but has the wrong type.

The correct type is "string".

Use the correct (proposed) value type for the given parameter name, i.e.,

<Parameter name="smoother: type" type="string" value="RELAXATION"/>

instead of
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<Parameter name="smoother: type" type="int" value="RELAXATION"/>

B.2 MUELU errors
B.2.1 General errors

Throw test that evaluated to true: s_.is_null()

Smoother for Epetra was not constructed
during request for data " PreSmoother" on level 0 by factory NoFactory

Failed to create a level smoother. Check the smoother blocks in your xml file. The error occurs,
e.g., if there is a typing error in the smoother: type parameter. For example

<Parameter name="smoother: type" type="string" value="REXATION"/>

would trigger above error since the smoother type should be RELAXATION.

IFPACK ERROR -2, ifpack/src/Ifpack_PointRelaxation.cpp, line 117

Errors like this indicate that it is a problem within the smoother: params section. Most likely
a (relaxation) smoother is requested which is not existing (e.g., Jadobi instead of Jacobi).

The parameter name "smother: type" is not valid. Did you mean "smoother: type"?

There is a typo in your parameter list. Locate the parameter and fix it (using the suggestions,
that come with the error message).

Throw test that evaluated to true: maxNodesPerAggregate < minNodesPerAggregate

Choose the aggregation: min agg size parameter to be smallter than the aggregation: max agg size
parameter for the aggregation routine.

B.2.2 Advanced XML file format

Throw test that evaluated to true: bIsZeroNSColumn == true

MueLu::TentativePFactory::MakeTentative: fine level NS part has a zero column

This error indicates that there is a problem with the provided near null space vectors. There are
different reasons which can trigger this problem:
• The near null space vectors are not valid (containing zeros, wrong ordering of internal
degrees of freedom). Please check your near null space vectors. Maybe there is an empty
vector or the ordering of degrees of freedom for the linear operator does not match with
the ordering of the near null space vectors.
• The near null space vectors are correct but used in a wrong way (e.g., a wrong number of
degrees of freedom). Check the screen output for wrong block dimensions (CoalesceDrop-
Factory).
• There is a problem with the aggregates. Validate the screen output and look for unusual
(e.g. very small or empty) aggregates.

Throw test that evaluated to true: factoryManager_ == null

MueLu::Level(0)::GetFactory(Aggregates, 0): No FactoryManager



B.2 MUELU errors 91

This is a typical error when the dependency tree is screwed up. If aggregates and/or transfer
operators are involved usually one has forgotten some entries in the Hierarchy sublist of the
extended XML file format for the internal factory managers. These errors can be quite tricky to
fix. In general it is a good idea to start with a working XML file and extend it step by step if
possible. The following general strategies may help to track down the problem:
• Run the problem with verbosity=high to get as much screen output as possible. Check

for unusual screen output (such as Nullspace factory.
• Try to generate a graphical dependency tree as described in §10.2.
For example, above error is caused by the following XML file

1 <ParameterList name="MueLu">
2 <ParameterList name="Factories">
3 <ParameterList name="myTentativePFact">
4 <Parameter name="factory" type="string" value="

TentativePFactory"/>
5 </ParameterList>
6 </ParameterList>
7

8 <ParameterList name="Hierarchy">
9 <ParameterList name="Levels">

10 <Parameter name="P" type="string" value="myTentativePFact"/>
11 <!--<Parameter name="Nullspace" type="string" value="myTentativePFact"/>-->
12 </ParameterList>
13 </ParameterList>
14 </ParameterList>

Looking at the error output it seems to be a problem with aggregates. However, in the XML
file no special aggregation factory has been declared. The only factory which has been introduced
was a tentative prolongation factory for generating unsmoothed transfer operators. Therefore, one
should start digging into the details of the TentativePFactory to find out that the unsmoothed
transfer operator factory is responsible both for creating the unsmoothed prolongator and the
coarse level null space information. When looking at the screen output one should find that the
last called/generated factory is a NullspaceFactory which can also be a hint that the problem
is the null space.

When looking at the XML file one can see that the myTentativePFact factory has been
registered to be responsible for generating the prolongator P , but the generating factory for the
variable Nullspace is not declared. MueLu tries to generate the default null space, but since
it does not know about myTentativePFact to be a TentativePFactory which would already
produce the needed information the calling ordering of the dependent factories (e.g., aggregation)
gets mixed up.

Note that the TentativePFactory is special. If you declare an explicit instance of the
TentativePFactory you always have to register it for generating the Nullspace variable, too.
Only in very special cases this would not be necessary.

* This is a general rule: if a factory generates more than one output variables, always make sure
that all these output variables are properly defined in the FactoryManager list (or Hierarchy
sublist in the xml files, respectively).

To solve above problem there are two possibilities:
• Following above comment, just register myTentativePFact for generating Nullspace. That

is, just comment in the corresponding line in above xml file.
• Alternatively you can register myTentativePFact for generating Ptent (and P). This way
you mark the myTentativePFact object to be used for generating the unsmoothed transfer
operators (and state that they shall be used for the final prolongation operators). MueLu
is smart enough to understand that the factory responsible for generating Ptent is also
supposed to generate the null space vectors.
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